早教吧作业答案频道 -->数学-->
求整数划分问题证明把自然数S(S>1)分拆为若干个自然数的和:S=a1+a2+…+an,则当a1,a2,…,an中至多有两个2,其余都是3时,其连乘积m=a1a2…an有最大值.这个命题是真命题,如何求证?肯定不是只有
题目详情
求整数划分问题证明
把自然数S(S>1)分拆为若干个自然数的和:
S=a1+a2+…+an,
则当a1,a2,…,an中至多有两个2,其余都是3时,其连乘积m=a1a2…an有最大值.
这个命题是真命题,如何求证?
肯定不是只有一种分法。
比如8=2+3+3=2+6
这就是两种分法了,乘积显然不同
把自然数S(S>1)分拆为若干个自然数的和:
S=a1+a2+…+an,
则当a1,a2,…,an中至多有两个2,其余都是3时,其连乘积m=a1a2…an有最大值.
这个命题是真命题,如何求证?
肯定不是只有一种分法。
比如8=2+3+3=2+6
这就是两种分法了,乘积显然不同
▼优质解答
答案和解析
首先..1是不会对连乘积有任何帮助的.
其次,对任意一个数a=m*n,假设m=n-1,就是对2个相邻的自然数,那么连乘积就是m的n次方或者n的m次方,其中n=m+1.可以用数学归纳法证出来当m>2时,m的n次方比n的m次方大.具体不在这写了.这说明把数的每一项分的尽可能小,对连乘积有利.但是3比2有利.
因为6=2+2+2=3+3.所以3个2等于2个3,所以如果有3个2出现的时候,改成2个3会使连乘积更大.
综上,得证
其次,对任意一个数a=m*n,假设m=n-1,就是对2个相邻的自然数,那么连乘积就是m的n次方或者n的m次方,其中n=m+1.可以用数学归纳法证出来当m>2时,m的n次方比n的m次方大.具体不在这写了.这说明把数的每一项分的尽可能小,对连乘积有利.但是3比2有利.
因为6=2+2+2=3+3.所以3个2等于2个3,所以如果有3个2出现的时候,改成2个3会使连乘积更大.
综上,得证
看了 求整数划分问题证明把自然数S...的网友还看了以下:
已知数列{an}和{bn}是公比不相等的两个等比数列.cn=an+bn,证明:数列{cn}不是等比 2020-05-15 …
设数列{an}中是等比数列,且S=a1+a2+---an,R=1/a1+1/a2+---1/an, 2020-06-07 …
设A={a1,a2,…,an}⊆M(n∈N*,n≥2),若a1+a2+…+an=a1a2…an,则 2020-07-21 …
已知函数f(x)=x/x+1,若数列{an}满足a1=1,an+1=f(an),设数列{cn}满足 2020-07-29 …
不等式证明!在线等(与数列有关)求证an>1数列{an}中,已知a1=a(a>1),且an+1=( 2020-07-29 …
等比数列{an}中,a1=512,公比q=-1/2,用An表示它的前n项之积:An=a1a2……a 2020-07-30 …
已知在数列{an}中,a1=3,an+1=can+d(c,d是常数)(1)当c=1,d=-1时求数 2020-07-30 …
求证均值不等式n/(1/a1+1/a2+...+1/an)≤a1a2...an开n次方n/(1/a 2020-08-03 …
A1,A2和B是任意事件,且0<P(B)<1,P((A1∪A2)/B)=P(A1/B)+P(A2/B 2020-10-31 …
线性代数行列式a1+xa2……ana1a2+x……an………………a1a2……an+x 2020-10-31 …