早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△AOB中,OA=(2cosα,2sinα),OB=(5cosβ,5sinβ),若OA•OB=−5,则△AOB的面积为()A.3B.532C.32D.53

题目详情
OA
=(2cosα,2sinα),
OB
=(5cosβ,5sinβ),若
OA
OB
=−5,则△AOB的面积为(  )
A.
3

B.
5
3
2

C.
3
2

D. 5
3
OA
OAOA
OB
OBOB
OA
OB
=−5,则△AOB的面积为(  )
A.
3

B.
5
3
2

C.
3
2

D. 5
3
OA
OAOA
OB
OBOB
3

B.
5
3
2

C.
3
2

D. 5
3
3
3
3
5
3
2

C.
3
2

D. 5
3
5
3
2
5
3
5
3
3
3
322
3
2

D. 5
3
3
2
3
3
3
3
322
5
3
3
3
3
▼优质解答
答案和解析
OA
OB
=10cosαcosβ+10sinαsinβ=10cos(α-β)
OA
OB
=−5
∴2cos(α-β)=-1
cos(α−β)=−
1
2
,⇒∠AOB=120°,
则△AOB的面积为:
1
2
|
OA
|×|
OB
|×sin∠AOB=
1
2
×2×5×
3
2
=
5
3
2

故选B.
OA
OAOAOA•
OB
OBOBOB=10cosαcosβ+10sinαsinβ=10cos(α-β)
OA
OB
=−5
∴2cos(α-β)=-1
cos(α−β)=−
1
2
,⇒∠AOB=120°,
则△AOB的面积为:
1
2
|
OA
|×|
OB
|×sin∠AOB=
1
2
×2×5×
3
2
=
5
3
2

故选B.
OA
OAOAOA•
OB
OBOBOB=−5
∴2cos(α-β)=-1
cos(α−β)=−
1
2
,⇒∠AOB=120°,
则△AOB的面积为:
1
2
|
OA
|×|
OB
|×sin∠AOB=
1
2
×2×5×
3
2
=
5
3
2

故选B.
cos(α−β)=−
1
2
111222,⇒∠AOB=120°,
则△AOB的面积为:
1
2
|
OA
|×|
OB
|×sin∠AOB=
1
2
×2×5×
3
2
=
5
3
2

故选B.
1
2
111222|
OA
OAOAOA|×|
OB
OBOBOB|×sin∠AOB=
1
2
×2×5×
3
2
=
5
3
2

故选B.
1
2
111222×2×5×
3
2
3
3
3
3
33222=
5
3
2

故选B.
5
3
2
5
3
5
3
5
3
3
33222
故选B.