早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)=2x^3+3ax^2+3bx+8c在x=1与x=2取到极值1)求a.b的值(2)对任意x属于闭区间0到3均有f(x)

题目详情
已知f(x)=2x^3+3ax^2+3bx+8c在x=1与x=2取到极值
1)求a.b 的值(2)对任意x属于闭区间0到3均有f(x)
▼优质解答
答案和解析
f(x)=2x^3+3ax^2+3bx+8c,
求导,得到f(x)'=6x^2+6ax+3b,
又,在x=1与x=2取到极值,
故f(x)'=k(x-1)(x-2)=6x^2+6ax+3b,
得到 kx^2-3kx+2k=6x^2+6ax+3b,
比较系数,得:k=6,-3k=6a,2k=3b
故,a=-3,b=4.
所以f(x)=2x^3-9x^2+12x+8c
根据题意有对任意x属于闭区间0到3均有f(x)