早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•天津一模)已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点P(2,c)处有相同的切线(P为切点),求a,b的值;(Ⅱ)令h(x)=f

题目详情
(2014•天津一模)已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点P(2,c)处有相同的切线(P为切点),求a,b的值;
(Ⅱ)令h(x)=f(x)+g(x),若函数h(x)的单调递减区间为[
a
2
,−
b
3
],求:
(1)函数h(x)在区间(-∞,-1]上的最大值M(a);
(2)若|h(x)|≤3,在x∈[-2,0]上恒成立,求a的取值范围.
▼优质解答
答案和解析
(I)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=4a,g(x)=x3+bx,则f'(x)=3x2+b,k2=12+b,
由(2,c)为公共切点,可得:4a=12+b  ①
又f(2)=4a+1,g(2)=8+2b,
∴4a+1=8+2b,与①联立可得:a=
17
4
,b=5.
(2)由h(x)=f(x)+g(x)=x3+ax2+bx+1,
则h′(x)=3x2+2ax+b,
因函数h(x)的单调递减区间为[
a
2
,−
b
3
],∴当x∈[
a
2
,−
b
3
]时,3x2+2ax+b≤0恒成立,
此时,x=-
b
3
是方程3x2+2ax+b=0的一个根,得3(-
b
3
2+2a(-
b
3
)+b=0,得a2=4b,
∴h(x)=x3+ax2+
1
4
a2x+1
令h'(x)=0,解得:x1=-
a
2
,x2=-
a
6

∵a>0,∴-
a
2
<-
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号