早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正方形ABCD的边长是4,E是AB边上一点(E不与A、B重合),F是AD的延长线上一点,DF=2BE.四边形AEGF是句型,其面积y随BE的长x的变化而变化且构成函数.(1)求y与x之间的函数关系式

题目详情
如图,正方形ABCD的边长是4,E是AB边上一点(E不与A、B重合),F是AD的延长线上一点,DF=2BE.四边形AEGF是句型,其面积y随BE的长x的变化而变化且构成函数.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若上述(1)中是二次函数,请用配方法把它转化成y=a(x-h) 2 +k的形式,并指出当x取何值时,y取得最大(或最小)值,该值是多少?
(3)直接写出抛物线与x轴交点坐标.
▼优质解答
答案和解析
(1)∵正方形ABCD的边长是4,BE=x,DF=2BE,
∴AE=AB-BE=4-x,AF=AD+DF=4+2x,
∴y=(4-x)(4+2x)=-2x 2 +4x+16,
∵E不与A、B重合,
∴0<x<4,
故y=-2x 2 +4x+16(0<x<4);

(2)y=-2x 2 +4x+16=-2(x 2 -2x+1)+2+16=-2(x-1) 2 +18,
∴y=-2(x-1) 2 +18,
∵a=-2<0,
∴x=1时,y有最大值,最大值为18;

(3)令y=0,则-2x 2 +4x+16=0,
整理得,2x 2 -4x-16=0,
解得x 1 =-2,x 2 =4,
∴抛物线与x轴交点坐标为(-2,0),(4,0).