早教吧作业答案频道 -->数学-->
证明f(x)=(1+1/x)的x次幂在x>0上是严格单调增加的
题目详情
证明f(x)=(1+1/x)的x次幂在x>0上是严格单调增加的
▼优质解答
答案和解析
f(x)=(1+1/x)^x=e^[xln(1+1/x)],x>0,
f'(x)=(1+1/x)^x*[ln(1+1/x)+x/(1+1/x)*(-1/x^)]
=(1+1/x)^x*[ln(1+1/x)-1/(x+1)],
设g(x)=ln(1+1/x)-1/(1+x),x>0,则
g'(x)=1/(1+1/x)*(-1/x^)+1/(1+x)^
=-1/[x(1+x)]+1/(1+x)^
=-1/[x(1+x)^]g(+∞)→0,
∴f'(x)>0,
∴f(x)↑.
f'(x)=(1+1/x)^x*[ln(1+1/x)+x/(1+1/x)*(-1/x^)]
=(1+1/x)^x*[ln(1+1/x)-1/(x+1)],
设g(x)=ln(1+1/x)-1/(1+x),x>0,则
g'(x)=1/(1+1/x)*(-1/x^)+1/(1+x)^
=-1/[x(1+x)]+1/(1+x)^
=-1/[x(1+x)^]g(+∞)→0,
∴f'(x)>0,
∴f(x)↑.
看了 证明f(x)=(1+1/x)...的网友还看了以下:
1.下列分式方程中,有解的是().A.x/x^2-1=1/x-1B.x/x^2-1=1/x+1C. 2020-05-01 …
关于同阶无穷小的问题A=(1-x)/(1+x),B=1-x~0.5.则当x趋于1时,A与B是同阶无 2020-05-13 …
分解因式(x+y)的平方-2(x+y)+1明天要用 2020-06-06 …
设fn(x)=x+x^2+x^3+...+x^n(n≥2)(1)证明方程fn(x)=1有唯一的正根 2020-06-11 …
已知f(x)=a^x-1/a^x(其中a>1,x∈R)(1)判断并证明f(x)的奇偶性与单调性已知 2020-06-14 …
如何掌握这方面有关知识做题时的窍门?比如求证lim(x->1)(x^2-1)/(x-1)(2-x) 2020-06-29 …
已:F(x)在[1,∞)上可微,F(1)=1且F'(x)=1/(x^2+F^2),x∈(1,∞), 2020-07-10 …
1.求:怎么证明2^x是增函数?2.怎么样证明2^x+(1/2)^x是在正实数范围内是增函数f(x 2020-08-01 …
正数x,y,zxyz=1证明:1/[x*x*(y+1)+1]+1/[y*y*(z+1)+1]+1/[ 2020-10-31 …
设f(x)=1-(1/x+1),x大于等于0.1.用单调性证明f(x)在定义域上是增函数2.设g(x 2020-11-02 …