早教吧作业答案频道 -->其他-->
证明limn→无穷[(1/n2+n+1)+(2/n2+n+2)+……+(n/n2+n+n)]=½
题目详情
证明limn→无穷[(1/n2+n+1)+(2/n2+n+2)+……+(n/n2+n+n)]=½
▼优质解答
答案和解析
当n→无穷,
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≤1/(n^2+n+1)+2/(n^2+n+1)+...+n/(n^2+n+1)
=(1+2+...+n)/(n^2+n+1)
=(1/2)(n+1)n/(n^2+n+1)
-> 1/2
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≥1/(n^2+n+n)+2/(n^2+n+n)+...+n/(n^2+n+n)
= (1+2+...+n)/[(n^2)+2n]
= (1/2)(n+1)n/[(n^2)+2n]
-> 1/2
所以,
当n→无穷,1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
=1/2
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≤1/(n^2+n+1)+2/(n^2+n+1)+...+n/(n^2+n+1)
=(1+2+...+n)/(n^2+n+1)
=(1/2)(n+1)n/(n^2+n+1)
-> 1/2
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≥1/(n^2+n+n)+2/(n^2+n+n)+...+n/(n^2+n+n)
= (1+2+...+n)/[(n^2)+2n]
= (1/2)(n+1)n/[(n^2)+2n]
-> 1/2
所以,
当n→无穷,1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
=1/2
看了 证明limn→无穷[(1/n...的网友还看了以下:
{a(n)}中a(1)=3;na(n=+1)-(n+1)a(n)=2n(n+1);证明{a(n)/n 2020-03-30 …
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
(n+1)(n+2)(n+3)(n+4)+1=()^2详细题目见补充1、观察下列运算并填空:1x2 2020-04-07 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
二次函数y=n(n+1)X^2-(2n+1)X+1 ,n=1,2,3.时,其图像在X轴上截得线段长 2020-05-16 …
1、等比数列中,知道a3=1,S3=13,怎么得出q=1/3?2、已知nS(n+1)>(n+1)S 2020-06-04 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
证明组合性质:C(n+1,m)=C(n,m)+C(n,m-1)C(n+1,m)=(n+1)!/m!( 2020-11-01 …