早教吧作业答案频道 -->数学-->
已知函数f0(x)=x(sinx+cosx),设fn(x)是fn-1(x)的导数,n∈N*.(1)求f1(x),f2(x)的表达式;(2)写出fn(x)的表达式,并用数学归纳法证明.
题目详情
已知函数f0(x)=x(sinx+cosx),设fn(x)是fn-1(x)的导数,n∈N*.
(1)求f1(x),f2(x)的表达式;
(2)写出fn(x)的表达式,并用数学归纳法证明.
(1)求f1(x),f2(x)的表达式;
(2)写出fn(x)的表达式,并用数学归纳法证明.
▼优质解答
答案和解析
(1)f1(x)=f0′(x)=(sinx+cosx)+x(cosx-sinx)=(x-1)sin(-x)+(x+1)cosx,
f2(x)=f1′(x)=-sinx+(1-x)cosx+cosx-(1+x)sinx=-(2+x)sinx-(x-2)cosx,
(2)由(1)得f3(x)=f2′(x)=-(3+x)cosx+(x-3)sinx,
把f1(x),f2(x),f3(x),
f1(x)=(x+1)sin(x+
)+(x-1)cos(x+
),
f2(x)=(x+2)sin(x+
)+(x-2)cos(x+
),
f3(x)=(x+3)sin(x+
)+(x-2)cos(x+
),
猜想fn(x)=(x+n)sin(x+
)+(x-n)cos(x+
)(*),
下面用数学归纳法证明上述等式,
①当n=1时,由(1)可知,等式(*)成立,
②假设当n=k时,等式(*)成立,即fk(x)=(x+k)sin(x+
)+(x-k)cos(x+
),
则当n=k+1时,fk+1(x)=fk′(x)=sin(x+
)+(x+k)cosx+
)+cos(x+
)+(x-k)[-sin(x+
)],
=(x+k+1)cos(x+
)+[x-(k+1)][-sin(x+
)],
=(x+k+1)sin(x+
π)+[x-(k+1)]cos(x+
π),
即当n=k+1时,等式(*)成立
综上所述,当n∈N*,fn(x)=(x+n)sin(x+
)+(x-n)cos(x+
)成立.
f2(x)=f1′(x)=-sinx+(1-x)cosx+cosx-(1+x)sinx=-(2+x)sinx-(x-2)cosx,
(2)由(1)得f3(x)=f2′(x)=-(3+x)cosx+(x-3)sinx,
把f1(x),f2(x),f3(x),
f1(x)=(x+1)sin(x+
π |
2 |
π |
2 |
f2(x)=(x+2)sin(x+
2π |
2 |
2π |
2 |
f3(x)=(x+3)sin(x+
3π |
2 |
3π |
2 |
猜想fn(x)=(x+n)sin(x+
nπ |
2 |
nπ |
2 |
下面用数学归纳法证明上述等式,
①当n=1时,由(1)可知,等式(*)成立,
②假设当n=k时,等式(*)成立,即fk(x)=(x+k)sin(x+
kπ |
2 |
kπ |
2 |
则当n=k+1时,fk+1(x)=fk′(x)=sin(x+
kπ |
2 |
kπ |
2 |
kπ |
2 |
kπ |
2 |
=(x+k+1)cos(x+
kπ |
2 |
kπ |
2 |
=(x+k+1)sin(x+
k+1 |
2 |
k+1 |
2 |
即当n=k+1时,等式(*)成立
综上所述,当n∈N*,fn(x)=(x+n)sin(x+
nπ |
2 |
nπ |
2 |
看了 已知函数f0(x)=x(si...的网友还看了以下:
已知定义在R上的函数f(x)既是偶函数,又是周期为π的函数,且当x∈0,π/2时,f(x)=sin 2020-04-12 …
归结原则里的左(右)极限lim(x→X.-)f(x),为什么数列Xn要取单调的.用证明归结原则里极 2020-05-14 …
f(x)在0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明 2020-06-05 …
已知x、y属于R,且2^x+3^y>2^-y+3^-x,求证x+y>0 2020-06-12 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).(1)用数学归纳法证 2020-08-01 …
数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).(Ⅰ)用数学归纳法证 2020-08-01 …
求证x>0时,1+2x<e∧2x 2020-10-31 …
高数求证x>=elnx(0 2020-11-01 …
设f(x)=(x+2)/(x+1)sin1/x,a>0为任意正常数,证明:f(x)在(0,a)内非一 2021-01-12 …