早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f0(x)=x(sinx+cosx),设fn(x)是fn-1(x)的导数,n∈N*.(1)求f1(x),f2(x)的表达式;(2)写出fn(x)的表达式,并用数学归纳法证明.

题目详情
已知函数f0(x)=x(sinx+cosx),设fn(x)是fn-1(x)的导数,n∈N*
(1)求f1(x),f2(x)的表达式;
(2)写出fn(x)的表达式,并用数学归纳法证明.
▼优质解答
答案和解析
(1)f1(x)=f0′(x)=(sinx+cosx)+x(cosx-sinx)=(x-1)sin(-x)+(x+1)cosx,
f2(x)=f1′(x)=-sinx+(1-x)cosx+cosx-(1+x)sinx=-(2+x)sinx-(x-2)cosx,
(2)由(1)得f3(x)=f2′(x)=-(3+x)cosx+(x-3)sinx,
把f1(x),f2(x),f3(x),
f1(x)=(x+1)sin(x+
π
2
)+(x-1)cos(x+
π
2
),
f2(x)=(x+2)sin(x+
2
)+(x-2)cos(x+
2
),
f3(x)=(x+3)sin(x+
2
)+(x-2)cos(x+
2
),
猜想fn(x)=(x+n)sin(x+
2
)+(x-n)cos(x+
2
)(*),
下面用数学归纳法证明上述等式,
①当n=1时,由(1)可知,等式(*)成立,
②假设当n=k时,等式(*)成立,即fk(x)=(x+k)sin(x+
2
)+(x-k)cos(x+
2
),
则当n=k+1时,fk+1(x)=fk′(x)=sin(x+
2
)+(x+k)cosx+
2
)+cos(x+
2
)+(x-k)[-sin(x+
2
)],
=(x+k+1)cos(x+
2
)+[x-(k+1)][-sin(x+
2
)],
=(x+k+1)sin(x+
k+1
2
π)+[x-(k+1)]cos(x+
k+1
2
π),
即当n=k+1时,等式(*)成立
综上所述,当n∈N*,fn(x)=(x+n)sin(x+
2
)+(x-n)cos(x+
2
)成立.