早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=x3−3x2+1,g(x)=x+14x,x>0−x2−6x−8,x≤0,关于方程g[f(x)]-a=0(a为正实数)的根的叙述有下列四个命题①存在实数a,使得方程恰有3个不同的实根;②存在实数a,使得方程

题目详情
已知函数f(x)=x3−3x2+1,g(x)=
x+
1
4x
,x>0
x2−6x−8,x≤0
,关于方程g[f(x)]-a=0(a为正实数)的根的叙述有下列四个命题
①存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是(  )

A.0
B.1
C.2
D.3
▼优质解答
答案和解析
关于x的方程g[f(x)]-a=0可化为g[f(x)]=a,
分别画出函数y=g[f(x)]和y=a(a>0)的图象,如图.
由图可知,它们的交点情况是:
可能有4个、5个、或6个不同的交点,故有:
①不存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是3.
故选D.