早教吧作业答案频道 -->数学-->
圆C:x2+y2+4ax+4a2-4=0和圆C:x2+y2-2by+b2-1=0只有一条公切线,若a∈R,b∈R,且ab≠0,则1/a2+1/b2的最小值为A.2B.4C.8D.9
题目详情
圆C:x2+y2+4ax+4a2-4=0和圆C:x2+y2-2by+b2-1=0只有一条公切线,若a∈R,b∈R,且ab≠0,则1/a2+1/b2的最小值为
A.2
B.4
C.8
D.9
A.2
B.4
C.8
D.9
▼优质解答
答案和解析
答案:最小值9,选D
先对两圆方程式配方
x²+y²-4by-1+4b²=0
x²+(y²-4by+4b²)=1
x²+(y-2b)²=1²
所以此圆是以(0,2b)为圆心,1为半径的圆
x²+y²+2ax+a²-4=0
(x²+2ax+a²)+y²=4
(x+a)²+y²=2²
所以此圆是以(-a,0)为圆心,2为半径的圆
因为两圆恰有一条公切线,
所以易知两圆内切
所以 两圆圆心距=两圆半径之差的绝对值
即√【[0-(-a)]²+(2b-0)²】=|2-1|
√(a²+4b²)=1
a²+4b²=1
于是题目变成了我们熟悉的“已知a²+4b²=1,求1/a²+1/b²的最小值”
把a²+4b²=1代入1/a²+1/b²得
1/a²+1/b²
=(a²+4b²)/a²+(a²+4b²)/b²
=5+(b²/a²)+(4a²/b²)
≥5+2√【(b²/a²)•(4a²/b²)】
=9
所以最小值为9,选D
【备注:1)均值不等式a+b≥2√ab,仅当a=b时取最小值
2)两圆外离,有4条公切线(2条外公切线,2条内公切线)
两圆外切,有3条公切线(2条外公切线,1条内公切线)
两圆相交,有2条公切线(2条外公切线)
两圆内切,有1条公切线(1条外公切线)
两圆内含,有0条公切线】
先对两圆方程式配方
x²+y²-4by-1+4b²=0
x²+(y²-4by+4b²)=1
x²+(y-2b)²=1²
所以此圆是以(0,2b)为圆心,1为半径的圆
x²+y²+2ax+a²-4=0
(x²+2ax+a²)+y²=4
(x+a)²+y²=2²
所以此圆是以(-a,0)为圆心,2为半径的圆
因为两圆恰有一条公切线,
所以易知两圆内切
所以 两圆圆心距=两圆半径之差的绝对值
即√【[0-(-a)]²+(2b-0)²】=|2-1|
√(a²+4b²)=1
a²+4b²=1
于是题目变成了我们熟悉的“已知a²+4b²=1,求1/a²+1/b²的最小值”
把a²+4b²=1代入1/a²+1/b²得
1/a²+1/b²
=(a²+4b²)/a²+(a²+4b²)/b²
=5+(b²/a²)+(4a²/b²)
≥5+2√【(b²/a²)•(4a²/b²)】
=9
所以最小值为9,选D
【备注:1)均值不等式a+b≥2√ab,仅当a=b时取最小值
2)两圆外离,有4条公切线(2条外公切线,2条内公切线)
两圆外切,有3条公切线(2条外公切线,1条内公切线)
两圆相交,有2条公切线(2条外公切线)
两圆内切,有1条公切线(1条外公切线)
两圆内含,有0条公切线】
看了 圆C:x2+y2+4ax+4...的网友还看了以下:
已知双曲线x2a2-y2=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率 2020-04-08 …
已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB 2020-04-08 …
已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB 2020-04-08 …
已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB 2020-04-08 …
双曲线y1,y2在第一象限的图象如图,y1=4/x,过y1上的任意一点a,作x轴的平行线交y2于b 2020-05-14 …
三道高二解析几何题1.已知抛物线y=(-1/2)x2+6点A、B和P(2,4)都在抛物线上,若直线 2020-07-13 …
过点A(2,1)的直线与双曲线2x2-y2=2交于P、Q两点,则线段PQ的中点M的轨迹方程是()A 2020-07-26 …
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物 2020-08-03 …
如图,已知双曲线x2-y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1 2020-11-27 …
已知双曲线x2-y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1相切, 2020-12-31 …