早教吧作业答案频道 -->数学-->
过点A(2,1)的直线与双曲线2x2-y2=2交于P、Q两点,则线段PQ的中点M的轨迹方程是()A.2x2-y2-4x+y=0B.2x2-y2+4x+y=0C.2x2-y2+4x-y=0D.2x2-y2-4x-y=0
题目详情
过点A(2,1)的直线与双曲线2x2-y2=2交于P、Q两点,则线段PQ的中点M的轨迹方程是( )
A. 2x2-y2-4x+y=0
B. 2x2-y2+4x+y=0
C. 2x2-y2+4x-y=0
D. 2x2-y2-4x-y=0
A. 2x2-y2-4x+y=0
B. 2x2-y2+4x+y=0
C. 2x2-y2+4x-y=0
D. 2x2-y2-4x-y=0
▼优质解答
答案和解析
设P(x1,y1),Q(x2,y2),M(x,y),则x1+x2=2x,y1+y2=2y,
∵2x12-y12=2,2x22-y22=2,
∴4x(x1-x2)-2y(y1-y2)=0,
∴kAB=
=
,
∵kAM=
,
∴
=
,
∴2x2-y2-4x+y=0,
即线段PQ的中点M的轨迹方程是2x2-y2-4x+y=0.
故选A.
∵2x12-y12=2,2x22-y22=2,
∴4x(x1-x2)-2y(y1-y2)=0,
∴kAB=
y1−y2 |
x1−x2 |
2x |
y |
∵kAM=
y−1 |
x−2 |
∴
2x |
y |
y−1 |
x−2 |
∴2x2-y2-4x+y=0,
即线段PQ的中点M的轨迹方程是2x2-y2-4x+y=0.
故选A.
看了 过点A(2,1)的直线与双曲...的网友还看了以下:
1、在4点到6点之间,时针与分针何时成120°角?具体!2、若时针有2点30分走到2点50分,1、在 2020-03-30 …
概率论之几何概率问题!2人约定下午1点到2点到车站坐车,在这时间段有4班车!开车时间为1点15,1 2020-06-14 …
如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个 2020-07-17 …
设函数y=f(x)的图像上点(0,-2)处切线为2x-3y=6则此函数可能为A,y=x^2-2B, 2020-07-20 …
若点O和点F(-2,0)分别为双曲线x^2/a^2-y^2/b^2=1的中心和左焦点若O和点F(- 2020-07-26 …
已知点A是圆F1:(x+3)2+y2=16上任意一点,点F2与点F1关于原点对称.线段AF2的中垂 2020-08-01 …
已知点F(p/2,0),直线L:x=-p/2,点M为L上的动点,过点M垂直于y轴的直线与线段MF的 2020-08-01 …
如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个 2020-08-03 …
若双曲线x^2/4-y^2/5=1与椭圆x^2/z^2+y^2/16=1有公共焦点,且z>0,则z= 2020-10-31 …
写出等式:1.斜率2,过点(-2,-4)2.过点(0,-1)和(1,0)3.过点(2...写出等式: 2020-11-23 …