早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过点A(2,1)的直线与双曲线2x2-y2=2交于P、Q两点,则线段PQ的中点M的轨迹方程是()A.2x2-y2-4x+y=0B.2x2-y2+4x+y=0C.2x2-y2+4x-y=0D.2x2-y2-4x-y=0

题目详情
过点A(2,1)的直线与双曲线2x2-y2=2交于P、Q两点,则线段PQ的中点M的轨迹方程是(  )
A. 2x2-y2-4x+y=0
B. 2x2-y2+4x+y=0
C. 2x2-y2+4x-y=0
D. 2x2-y2-4x-y=0
▼优质解答
答案和解析
设P(x1,y1),Q(x2,y2),M(x,y),则x1+x2=2x,y1+y2=2y,
∵2x12-y12=2,2x22-y22=2,
∴4x(x1-x2)-2y(y1-y2)=0,
∴kAB=
y1−y2
x1−x2
=
2x
y

∵kAM=
y−1
x−2

2x
y
=
y−1
x−2

∴2x2-y2-4x+y=0,
即线段PQ的中点M的轨迹方程是2x2-y2-4x+y=0.
故选A.