早教吧作业答案频道 -->数学-->
如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.
题目详情
如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.
(1)如图①,若BC=BD,求证:CD=DE;
(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.
(1)如图①,若BC=BD,求证:CD=DE;
(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.
▼优质解答
答案和解析
(1)∵AC=BC,∠CDE=∠A,
∴∠A=∠B=∠CDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,
,
∴△ADC≌△BED(ASA),
∴CD=DE;
(2)∵CD=BD,
∴∠B=∠DCB,
又∵∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如图,在DE上取点F,使得FD=BE,
在△CDF和△DBE中,
,
∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,
∴DE-BE=DE-DF=EF=2HE=2.
∴∠A=∠B=∠CDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,
|
∴△ADC≌△BED(ASA),
∴CD=DE;
(2)∵CD=BD,
∴∠B=∠DCB,
又∵∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如图,在DE上取点F,使得FD=BE,
在△CDF和△DBE中,
|
∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,
∴DE-BE=DE-DF=EF=2HE=2.
看了 如图,在等腰三角形△ABC中...的网友还看了以下:
1.比如一个三次函数其本身图像又两个极值点(对应有极值)与x轴有三个交点,但是导函数图像(二次函数 2020-05-17 …
判断(0,0)是不是二元函数极值点已知二元函数f(x,y)在点(0,0)某邻域内连续,且当x,y趋 2020-05-23 …
如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有()A.1个极 2020-07-08 …
函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)().A.无极大值点,有四 2020-07-08 …
对于一个多元函数,可求出在规定区域内只有唯一驻点,那么它是否一定是区域内的最值点?如果不是,请帮忙 2020-07-31 …
如果一个函数n阶可导,且在x0点前n-1阶导数都等于0,第n阶导数不为0,当n为偶数时,则x0为极 2020-07-31 …
已知f(x)对一切x满足xf''(x)+3x[f'(x)]^2=1-e^(-x),若f'(x0)= 2020-07-31 …
设函数f(x)在(-∞,+∞)内连续,其导函数的图形如图所示,则f(x)有()A.一个极小值点和两 2020-08-01 …
如图,点B(4,4)在双曲线y=kx(x>0)上,点C在双曲线y=-6x(x<0)上,点A是x轴上一 2020-11-01 …
函数g(x)中x∈R,其导函数g′(x)的图象如图,则函数g(x)()A.无极大值,有四个极小值点B 2020-12-08 …