早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.

题目详情
如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.
(1)如图①,若BC=BD,求证:CD=DE;
(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.
作业搜
▼优质解答
答案和解析
作业搜 (1)∵AC=BC,∠CDE=∠A,
∴∠A=∠B=∠CDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,
∠ACD=∠BDE
AC=BD
∠A=∠B

∴△ADC≌△BED(ASA),
∴CD=DE;

(2)∵CD=BD,作业搜
∴∠B=∠DCB,
又∵∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如图,在DE上取点F,使得FD=BE,
在△CDF和△DBE中,
DF=BE
∠CDE=∠B
CD=BD

∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,
∴DE-BE=DE-DF=EF=2HE=2.