早教吧 育儿知识 作业答案 考试题库 百科 知识分享

曲面z=x2+y2平行于平面2x+2y-z=0的切平面方程为.

题目详情
曲面z=x2+y2平行于平面2x+2y-z=0的切平面方程为______.
▼优质解答
答案和解析
设F(x,y,z)=x2+y2-z,
因为Fx′=2x,Fy′=2y,Fz′=-1,
故曲面z=x2+y2在点(x,y,z)处的法向量为:
n
=(2x,2y,−1).
又因为平面2x+2y-z=0的法向量为:(2,2,-1),
则由
2x
2
2y
2
−1
−1
可得,x=y=1.
从而所求切平面为:
2(x-2)+2(y-2)-(z-2)=0.
即:2x+2y-z-2=0.
故答案为:2x+2y-z-2=0.