早教吧作业答案频道 -->数学-->
1.设点P是双曲线x^2-y^2/3=1上一点,焦点F(2,0),点A(3,2),使|PA|+1/2|PF|有最小值时,则点P的坐标是2.已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,长轴长为2√3,直线l:y=kx+m交椭圆于不同的两点A、B.
题目详情
1.设点P是双曲线x^2-y^2/3=1上一点,焦点F(2,0),点A(3,2),使|PA|+1/2|PF|有最小值时,则点P的坐标是
2.已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,长轴长为2√3,直线l:y=kx+m交椭圆于不同的两点A、B.若坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值.
2.已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,长轴长为2√3,直线l:y=kx+m交椭圆于不同的两点A、B.若坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值.
▼优质解答
答案和解析
1.设点P是双曲线x²-y²/3=1上一点,焦点F(2,0),点A(3,2),
使|PA|+(1/2)|PF|有最小值时,则点P的坐标是
解:易知,双曲线的a=1, b=√3, c=2, e=c/a=2, 右准线方程: x=a²/c=1/2.
设双曲线上的动点P到右准线的距离为d,那么│PF│/d=e=2,故d=(1/2)│PF│.
∴│PA│+(1/2)│PF│=│PA│+d.
不难证明:取过A作右准线的垂直线与双曲线的交点为P,就能使│PA│+(1/2)│PF│
=│PA│+d最小.于是令y=2,代入双曲线方程得x²-4/3=1, x=√(1+4/3)=√(7/3)
即使│PA│+(1/2)│PF│最小的P点的坐标为(√(7/3), 2)=((√21)/3, 2)
2.已知椭圆x²/a²+y²/b²=1(a>b>0)的离心率为(√6)/3,长轴长为2√3,直线L:y=kx+m交椭
圆于不同的两点A、B.若坐标原点O到直线L的距离为(√3)/2,求△AOB面积的最大值.
解:易知,a=√3, a²=3, c=√2, c²=2, b²=1
故椭圆方程为 x²/3+y²=1
坐标原点到直线L的距离d=│-m│/√(k²+1)=(√3)/2,故有:
4m²=3k²+3.(1)
△AOB的面积S=(1/2)×[(√3)/2]×│AB│=[(√3)/4]│AB│
要使S最大,必须使弦长│AB│最大. 设A(x₁,y₁), B(x₂,y₂),则
│AB│=√[(x₁+x₂)²+(y₁+y₂)²-4(x₁x₂+y₁y₂)].(2)
将直线方程y=kx+m代入椭园方程,得
x²/3+(kx+m)²=1,展开化简得:
(1+3k²)x²+6kmx+3m²-3=0, x₁,x₂是其二根,故
x₁+x₂=-6km/(1+3k²)
x₁x₂=3(m²-1)/(1+3k²)
y₁+y₂=kx₁+m+kx₂+m=k(x₁+x₂)+2m=-6k²m/(1+3k²)+2m=2m/(1+3k²)
y₁y₂=(kx₁+m)(kx₂+m)=k²x₁x₂+km(x₁+x₂)+m²
=3k²(m²-1)/(1+3k²)-6k²m²/(1+3k²)+m²=(m²-3k²-6k²m²)/(1+3k²)
将以上四式代入(2),再与(1)联立消去一个参数(m或k),然后利用二次函数的知识
选取适当的m或k使│AB│最大,并求出这个最大值,问题就获得解决..
使|PA|+(1/2)|PF|有最小值时,则点P的坐标是
解:易知,双曲线的a=1, b=√3, c=2, e=c/a=2, 右准线方程: x=a²/c=1/2.
设双曲线上的动点P到右准线的距离为d,那么│PF│/d=e=2,故d=(1/2)│PF│.
∴│PA│+(1/2)│PF│=│PA│+d.
不难证明:取过A作右准线的垂直线与双曲线的交点为P,就能使│PA│+(1/2)│PF│
=│PA│+d最小.于是令y=2,代入双曲线方程得x²-4/3=1, x=√(1+4/3)=√(7/3)
即使│PA│+(1/2)│PF│最小的P点的坐标为(√(7/3), 2)=((√21)/3, 2)
2.已知椭圆x²/a²+y²/b²=1(a>b>0)的离心率为(√6)/3,长轴长为2√3,直线L:y=kx+m交椭
圆于不同的两点A、B.若坐标原点O到直线L的距离为(√3)/2,求△AOB面积的最大值.
解:易知,a=√3, a²=3, c=√2, c²=2, b²=1
故椭圆方程为 x²/3+y²=1
坐标原点到直线L的距离d=│-m│/√(k²+1)=(√3)/2,故有:
4m²=3k²+3.(1)
△AOB的面积S=(1/2)×[(√3)/2]×│AB│=[(√3)/4]│AB│
要使S最大,必须使弦长│AB│最大. 设A(x₁,y₁), B(x₂,y₂),则
│AB│=√[(x₁+x₂)²+(y₁+y₂)²-4(x₁x₂+y₁y₂)].(2)
将直线方程y=kx+m代入椭园方程,得
x²/3+(kx+m)²=1,展开化简得:
(1+3k²)x²+6kmx+3m²-3=0, x₁,x₂是其二根,故
x₁+x₂=-6km/(1+3k²)
x₁x₂=3(m²-1)/(1+3k²)
y₁+y₂=kx₁+m+kx₂+m=k(x₁+x₂)+2m=-6k²m/(1+3k²)+2m=2m/(1+3k²)
y₁y₂=(kx₁+m)(kx₂+m)=k²x₁x₂+km(x₁+x₂)+m²
=3k²(m²-1)/(1+3k²)-6k²m²/(1+3k²)+m²=(m²-3k²-6k²m²)/(1+3k²)
将以上四式代入(2),再与(1)联立消去一个参数(m或k),然后利用二次函数的知识
选取适当的m或k使│AB│最大,并求出这个最大值,问题就获得解决..
看了 1.设点P是双曲线x^2-y...的网友还看了以下:
在电场中的P点放入带电量qA=+2.0×10-6C试探电荷A,试探电荷A受到的电场力F=5.0×1 2020-05-13 …
已知椭圆两焦点F1,F2在y轴上,短轴长为2根号2,离心率为根号2/2,P是椭圆在第一象限弧上的一 2020-06-03 …
已知P为椭圆上一点已知P为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1,F2为 2020-06-30 …
数学填空在直角坐标系中,A(2,3),B(1,0),P是Y轴上一动点.在直角坐标系中,A(2,3) 2020-07-13 …
如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿 2020-07-20 …
已知点O(0,0)和点B(m,0)(m>0),动点P到O,B的距离比为2∶1,求P点轨迹和P点在什 2020-07-22 …
直线l经过原点和点A(3,6),点B坐标为(4,0).若P为射线OA上的一点(1)设P点横坐标为x 2020-07-30 …
如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.小 2020-08-01 …
给定两点A(x1y1)和B(x2y2)若取一点P(xy)使x=(1-t)x1+tx2y=(1-t) 2020-08-01 …
如图,数轴上有A、B两点,分别对应的数为a、b,已知(a+1)的平方与|b-3|互为相反数,点P为数 2020-11-17 …