早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设半径长为5的圆C满足条件:(1)截y轴所得弦长为6;(2)圆心在第一象限.并且到直线l:x+2y=0的距离为655.(Ⅰ)求这个圆的方程;(Ⅱ)求经过P(-1,0)与圆C相切的直线方程.

题目详情
设半径长为5的圆C满足条件:(1)截y轴所得弦长为6;(2)圆心在第一象限.并且到直线l:x+2y=0的距离为
6
5
5

(Ⅰ)求这个圆的方程;
(Ⅱ)求经过P(-1,0)与圆C相切的直线方程.
▼优质解答
答案和解析
(Ⅰ)由题设圆心C(a,b),半径r=5,
∵截y轴弦长为6,
∴a2+9=25,
∵a>0,
∴a=4…(2分)
由C到直线l:x+2y=0的距离为
6
5
5

∴d=
|4+2b|
5
=
6
5
5

∵b>0,
∴b=1,
∴圆的方程为(x-4)2+(y-1)2=25;
(Ⅱ)①斜率存在时,设切线方程y=k(x+1),
由C到直线y=k(x+1)的距离
|5k-1|
1+k2
=5…(8分)
k=-
12
5

∴切线方程:12x+5y+12=0…(10分)
②斜率不存在时,方程x=-1,也满足题意,
由①②可知切线方程:12x+5y+12=0或x=-1…(12分).