早教吧 育儿知识 作业答案 考试题库 百科 知识分享

椭圆x^2/a^2+y^/b^2=1(a>b>0)长轴的有端点为A,若椭圆上存在一点P,使∠APO=90求此椭圆的离心率的取值范围要过程!~速度谢谢~~

题目详情
椭圆x^2/a^2+y^/b^2=1(a>b>0)长轴的有端点为A,若椭圆上存在一点P,使∠APO=90
求此椭圆的离心率的取值范围
要过程!~
速度
谢谢~~
▼优质解答
答案和解析
很简单
椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的端点A,若存在一点P,使得∠APO=90
不妨设端点A在右端点为(a,0),P(x,y)
|P0|^2+|PA|^2=|0A|^2
计算得到P的轨迹x^2+y^2-ax=0
P必须与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交才能满足要求
故两方程联立得到
[(a^2-b^2)/a^2]x^2-ax+b^2=0
判别式△=a^2-4b^2*[(a^2-b^2)/a^2]≥0
根据c^2=a^2-b^2,离心率e=c/a
判别式整理得到4e^4-4e^2+1≥0
但(2e^2-1)^2≥0是显然的
所以只需要0