早教吧作业答案频道 -->数学-->
第二道综合题已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的离心率为二分之一根号二,短轴端点到焦点的距离为2(1)求椭圆方程(2)过左焦点F作椭圆的弦MN,问在x轴上是否存在一点P,使得PM和PN的内
题目详情
第二道综合题
已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)
的离心率为二分之一根号二,短轴端点到焦点的距离为2
(1)求椭圆方程
(2)过左焦点F作椭圆的弦MN,问在x轴上是否存在一点P,使得PM和PN的内积为定值,试说明理由.
恳请会的人赐教,
已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)
的离心率为二分之一根号二,短轴端点到焦点的距离为2
(1)求椭圆方程
(2)过左焦点F作椭圆的弦MN,问在x轴上是否存在一点P,使得PM和PN的内积为定值,试说明理由.
恳请会的人赐教,
▼优质解答
答案和解析
(1) 由离心率为二分之一根号二得到;
c/a=二分之一根号二 (1)
由短轴端点到焦点的距离为2 得到:
c^2+b^2=4 (2)
由椭圆性质得到:
a^2=b^2+c^2 (3)
解(1)(2)(3)得;
a =2 b =根号二 c=根号二
所以椭圆方程 为:
(x^2)/4+(y^2)/2=1
(2)假设存在这样的p点;设坐标为(x1,0)
假设这个弦垂直于x轴.此时得到M(负根号二,1)
N( 负根号二,-1),则PM 向量=(负根号二-x1,-1) PN向量=(负根号二-x1,1)
此时内积为:x1^2-1+2倍根号二x1
假设不垂直时,设直线方程为y=k(x+根号二)联立(x^2)/4+(y^2)/2=1 得到:
((1+2k^2)/4)x^2+根号二kx+k^2-1=0;
设M(x2,y2) N(x3.y3)
所以x2+x3=(4根号二k/(1+2k^2) (3)
x2x3=(4(k^2-1))/(1+2k^2) (4)
PM 向量=(x2-x1,-y2)
PN向量=(x3-x1,-y3)内积为:x2x3-x1(x2+x3)+x1^2+y2y3
再由(3)(4)得到:
内积=(4(k^2-1))/(1+2k^2)-x1(4根号二k/(1+2k^2)+x1^2+y2y3=
这个计算复杂了,你照我这个思路做下去,就是要使内积为定值,就是上面两个内积是相等的且定值即可.
解析几何计算是相当的复杂的,要细心的,我在电脑旁就没有详细的算出了.
祝高考顺利了
c/a=二分之一根号二 (1)
由短轴端点到焦点的距离为2 得到:
c^2+b^2=4 (2)
由椭圆性质得到:
a^2=b^2+c^2 (3)
解(1)(2)(3)得;
a =2 b =根号二 c=根号二
所以椭圆方程 为:
(x^2)/4+(y^2)/2=1
(2)假设存在这样的p点;设坐标为(x1,0)
假设这个弦垂直于x轴.此时得到M(负根号二,1)
N( 负根号二,-1),则PM 向量=(负根号二-x1,-1) PN向量=(负根号二-x1,1)
此时内积为:x1^2-1+2倍根号二x1
假设不垂直时,设直线方程为y=k(x+根号二)联立(x^2)/4+(y^2)/2=1 得到:
((1+2k^2)/4)x^2+根号二kx+k^2-1=0;
设M(x2,y2) N(x3.y3)
所以x2+x3=(4根号二k/(1+2k^2) (3)
x2x3=(4(k^2-1))/(1+2k^2) (4)
PM 向量=(x2-x1,-y2)
PN向量=(x3-x1,-y3)内积为:x2x3-x1(x2+x3)+x1^2+y2y3
再由(3)(4)得到:
内积=(4(k^2-1))/(1+2k^2)-x1(4根号二k/(1+2k^2)+x1^2+y2y3=
这个计算复杂了,你照我这个思路做下去,就是要使内积为定值,就是上面两个内积是相等的且定值即可.
解析几何计算是相当的复杂的,要细心的,我在电脑旁就没有详细的算出了.
祝高考顺利了
看了 第二道综合题已知椭圆C:(x...的网友还看了以下:
设双曲线的右准线与两渐近线分别交于A,B两点,以AB为直径的圆过右焦点F,则双曲线的离心率为. 2020-04-08 …
焦点在x轴上的椭圆,过左焦点的直线交椭圆与M,N两点,且2向量MF=5向量FN,求MN的斜率其椭圆 2020-05-13 …
1.求与椭圆X平方+Y平方/81=1有相同的焦点,且经过P(3,-3)的椭圆方程2.已知椭圆的中心 2020-05-15 …
椭圆的中心在原点,焦点在X轴,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线 2020-05-15 …
如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上, 2020-05-15 …
已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为23,过焦点且垂直于长轴的直线被椭圆截得的 2020-05-15 …
椭圆有两焦点坐标分别为F1负根号3,0),F2(根号3,0),且椭圆过点(1、负根号3/2),求求 2020-05-23 …
数学中什么是原点基础由于某些原因数学不好,问下数学中原点.还有圆过一点,点在哪里?的性质或解说 2020-06-03 …
已知A(-7,0),B(7,0),C(2,-12),椭圆过A,B两点且以C为其一焦点,求椭圆另一焦 2020-06-16 …
问一道解析几何关于椭圆的椭圆焦点在x轴椭圆上的点到焦点最远距离3最短距离1(1)求椭圆方程(2)若 2020-06-30 …