早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

题目详情
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
▼优质解答
答案和解析
存在点F为PC的中点,使BF∥平面AEC
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF⊄平面AEC,CE⊂平面AEC,BM⊄平面AEC,OE⊂平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF⊂平面BMF,
∴BF∥平面AEC.