早教吧作业答案频道 -->其他-->
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
题目详情
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
▼优质解答
答案和解析
存在点F为PC的中点,使BF∥平面AEC
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF⊄平面AEC,CE⊂平面AEC,BM⊄平面AEC,OE⊂平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF⊂平面BMF,
∴BF∥平面AEC.
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF⊄平面AEC,CE⊂平面AEC,BM⊄平面AEC,OE⊂平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF⊂平面BMF,
∴BF∥平面AEC.
看了 如图,底面是平行四边形的四棱...的网友还看了以下:
在三棱锥A-BCD中,E在棱AB上,F在棱CD上,且AE/EB=CF/FD=入(入>0)设α为异面 2020-04-24 …
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
高考圆锥曲线中抛物线结论问题就是有一些列圆锥曲线中抛物线方程过焦点直线与抛物线交A,B两点,焦点为 2020-06-12 …
在焦距为f的会聚薄透镜L的主光轴上放置一发光圆锥面(如图),圆锥的中心轴线与主光轴重合,锥的顶点位 2020-07-05 …
定义在R上的偶函数f(x)在(﹣∞,0]上单调递增,若f(a+1)<f(2a-1),求a的取值范围 2020-07-08 …
已知在⊙O中,AB=4√3,AC是⊙O的直径,AC⊥BD于F,∠A=30°(1)求图中阴影的面积( 2020-07-13 …
设c小于0,f(x)是区间a,b上的减函数,下列命题正确的是()A.f(x)在区间a,b上有最小值 2020-07-14 …
如图(1),△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿E 2020-07-30 …
抽象函数f(a-x)+f(x+b)=2c,求对称中心.f(a-x)+f(x+b)=2cf(x+b) 2020-08-02 …
f(x)在[a,b]上连续(a,b)上可导,且f(a)=f(b)=0证明任取k属于R,存在ξ属于(a 2020-11-03 …