早教吧作业答案频道 -->数学-->
如图,△ABC内接于圆O,P为BC上一点,点K在线段AP上,使得BK平分∠ABC.过K,P,C三点的圆Ω与边AC交于点D,连接BD交圆Ω于点E,连接PE并延长与边AB交于点F.证明:∠ABC=2∠FCB.
题目详情
如图,△ABC内接于圆O,P为
上一点,点K在线段AP上,使得BK平分∠ABC.过K,P,C三点的圆Ω与边AC交于点D,连接BD交圆Ω于点E,连接PE并延长与边AB交于点F.证明:∠ABC=2∠FCB.
BC |
▼优质解答
答案和解析
证明:设CF与圆Ω交于L(异于点C),连结PB、PC、BL、KL,
由题意,得此时C、D、L、K、E、P六点均在圆Ω上,
∵A、B、P、C四点共圆,∴∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP,
∴△FBE∽△FPB,∴FB2=FE•FP,
由切割线定理,得FE•FP=FL•FC,
∴FB2=FL•FC,
∴△FBL∽△FCB,
∴∠FLB=∠FBC=∠APC=∠KPC=∠FLK,即三点B、K、L共线,
∵△FBL∽△FCB,∴∠FCB=∠FBL=∠FBE=
∠ABC,
∴∠ABC=2∠FCB.
由题意,得此时C、D、L、K、E、P六点均在圆Ω上,
∵A、B、P、C四点共圆,∴∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP,
∴△FBE∽△FPB,∴FB2=FE•FP,
由切割线定理,得FE•FP=FL•FC,
∴FB2=FL•FC,
∴△FBL∽△FCB,
∴∠FLB=∠FBC=∠APC=∠KPC=∠FLK,即三点B、K、L共线,
∵△FBL∽△FCB,∴∠FCB=∠FBL=∠FBE=
1 |
2 |
∴∠ABC=2∠FCB.
看了 如图,△ABC内接于圆O,P...的网友还看了以下:
正老师,我遇到一个关于连读的疑惑,这个问题是关于连读的,爆破音+l时要失去爆破,但是我发现在美剧中 2020-05-14 …
如图,在平面直角坐标系中,以点 为圆心,以 长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点, 2020-05-17 …
数学分析题》》关于连续的设f:D->实数,|f|:D->实数因为|f|(x)=|f(x)|举一个例 2020-06-03 …
如图,等腰直角△ABC内接于⊙O,D为⊙O上一点,连接AD、BD、CD(1)如图(1),点D在半圆 2020-06-13 …
一个杯子里装了半杯水,连杯称一共400克.如果装满水,连杯称有多重?A.800克B.小于800克C 2020-07-16 …
已知等边三角形ABC,D是边BC的中点.过D作DE//AB于E,连结BE交AD于D1,过D1作D1 2020-07-22 …
一个三角形ABC,角A为60度,角B角C的角平分线分别交AB于D交AC于E两线交于点F连接D,E有 2020-07-30 …
如图:⊙O和⊙O'内切于P半径OA和OB切⊙O'于C、D连O'C和O'D如果两圆半径分别为9和3则 2020-07-31 …
(2014•安庆三模)如图所示,在等量异种电荷形成的电场中,以电荷连线中点O为圆心画一圆,交连线于 2020-08-01 …
关于三角形内任意一点的问题一个三角形内任意一点P,连接AP并延长交BC于D,连接BP并延长交AC于E 2020-12-25 …