早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,等腰△ABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB、AC相交于Q、R两点,又P′是P关于直线RQ的对称点.证明:△P′QB∽△P′RC.

题目详情
如图所示,等腰△ABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB、AC相交于Q、R两点,又P′是P关于直线RQ的对称点.证明:△P′QB∽△P′RC.
▼优质解答
答案和解析
如图,连P′B,P′C,P′Q,P′R,P′P,
∵AB=AC,
∴∠ABC=∠ACB,
∵PQ∥AC,
∴∠QPB=∠ACB,
∴∠QPB=∠QBC,
∴QP=QB,
又∵P′是P关于直线RQ的对称点,
∴QP=QP′,即QP=QP′=QB,
∴Q点为△P′PB的外心,
同理可得R为△P′PC的外心,
∴∠P′QB=2∠P′PB
=2(180°-∠P′PC)
=360°-2∠P′PC,
由∠P′PR=∠PP′R,∠RPC=∠PCR,
∴∠P′QB=360°-∠P′PC-∠PP′R-∠PCR
=∠P′RC,
∵QP′=QB,RP′=RC,
∴△P′QB∽△P′RC.