早教吧作业答案频道 -->其他-->
(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小
题目详情
(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.
(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:
证明:如图1,取AB的中点M,连接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵点E,M分别为正方形的边BC和AB的中点
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分线
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.
(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:
证明:如图1,取AB的中点M,连接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵点E,M分别为正方形的边BC和AB的中点
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分线
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.
▼优质解答
答案和解析
(2)探究2,证明:在AB上截取AM=EC,连接ME,
由(1)知∠EAM=∠FEC,
∵AM=EC,AB=BC,
∴BM=BE,
∴∠BME=45°,
∴∠AME=∠ECF=135°,
∵∠AEF=90°,
∴∠FEC+∠AEB=90°,
又∵∠EAM+∠AEB=90°,
∴∠EAM=∠FEC,
在△AEM和△EFC中,
,
∴△AEM≌△EFC(ASA),
∴AE=EF;
(3)探究3:成立,
证明:延长BA到M,使AM=CE,连接ME,
∴BM=BE,
∴∠BME=45°,
∴∠BME=∠ECF=45°,
又∵AD∥BE,
∴∠DAE=∠BEA,
又∵∠MAD=∠AEF=90°,
∴∠DAE+∠MAD=∠BEA+∠AEF,
即∠MAE=∠CEF,
在△MAE和△CEF中,
,
∴△MAE≌△CEF(ASA),
∴AE=EF.
由(1)知∠EAM=∠FEC,
∵AM=EC,AB=BC,
∴BM=BE,
∴∠BME=45°,
∴∠AME=∠ECF=135°,
∵∠AEF=90°,
∴∠FEC+∠AEB=90°,
又∵∠EAM+∠AEB=90°,
∴∠EAM=∠FEC,
在△AEM和△EFC中,
|
∴△AEM≌△EFC(ASA),
∴AE=EF;
(3)探究3:成立,
证明:延长BA到M,使AM=CE,连接ME,
∴BM=BE,
∴∠BME=45°,
∴∠BME=∠ECF=45°,
又∵AD∥BE,
∴∠DAE=∠BEA,
又∵∠MAD=∠AEF=90°,
∴∠DAE+∠MAD=∠BEA+∠AEF,
即∠MAE=∠CEF,
在△MAE和△CEF中,
|
∴△MAE≌△CEF(ASA),
∴AE=EF.
看了 (2012•青海)如图(*)...的网友还看了以下:
已知椭圆的中心在原点焦点坐标为(-根号3,0),(根号3,0),焦点构成一个正三角形,求椭圆的标准 2020-05-13 …
若命题“曲线C上的点坐标满足方程f(x,y)=0”是正确的,则下列命题中正确的是()A.f(x,y 2020-05-15 …
正方形的一个顶点为A(-1,0),一边所在直线的方程为x+3y-5=0正方形的一个顶点为A(-1, 2020-05-16 …
牛三的运用质量为1kg的质点静止在光滑水平面x轴上的原点,先施以x轴正方向的力1N,经历0.1s改 2020-05-21 …
先化简,在求值0.2(x-0.5)-0.3(1-2/x),其中X=-4小明由A点出发向正东方向走1 2020-05-23 …
(2014•佛山二模)如图所示,在水平地面上有一高H=0.8m、半径r=0.6m的光滑水平圆台,在 2020-07-21 …
在平面直角坐标系中,有正方形ABCD.A点坐标(0,4),B点坐标(-3,0),C点在第四象限,D 2020-07-30 …
如图所示,竖直平面内的一半径R=0.5m的不光滑圆弧槽BCD,B点与圆心O等高,D点在圆心正下方. 2020-07-31 …
求直线3x+4y-1=0的点方向式方程和点法式方程. 2020-11-07 …
1.一个机器人冲0点出发,向正东方向走3m到打A1点,再向正北方向走6m到达A2点,再向正西方向走9 2020-11-25 …