早教吧作业答案频道 -->数学-->
等比数列an公比q,前n项和Sn,且S3,S9,S6成等差数列.(1)求q³的值(2)求证a2,a8,a5成等差数列
题目详情
等比数列an公比q,前n项和Sn,且S3,S9,S6成等差数列.(1)求q³的值(2)求证a2,a8,a5成等差数列
▼优质解答
答案和解析
证明:由已知设An=A1q^(n-1),q为公比且不为0.
则q不为0也不为1时,Sn=[(q^n-1)/(q-1)]A1;
当q=1时,Sn=nA1;
∵2S9=S3+S6,
∴2[(q^9-1)/(q-1)]A1=[(q^3-1)/(q-1)]A1+[(q^6-1)/(q-1)]A1,
∴2q^9=q³+q^6,∴q³(2q³+1)(q³-1)=0,
∴q³=1或-1/2,∴q=1或(-1/2)^(1/3),
当q=1时,An=A1,则2A8-(A8+A5)=2A1-(A1+A1)=0,得证;
当q=(-1/2)^(1/3)时,An=A1[(-1/2)^(1/3)]^(n-1);
2A8-(A8+A5)
=2×A1[(-1/2)^(1/3)]^(8-1)
-{[A1[(-1/2)^(1/3)]^(2-1)]+[A1[(-1/2)^(1/3)]^(5-1)]}
=(A1/2)(-1/2)^(1/3)-[A1(-1/2)^(1/3)+(-A1/2)(-1/2)^(1/3)]
=(A1/2)(-1/2)^(1/3)-(A1/2)(-1/2)^(1/3)
=0,得证.
则q不为0也不为1时,Sn=[(q^n-1)/(q-1)]A1;
当q=1时,Sn=nA1;
∵2S9=S3+S6,
∴2[(q^9-1)/(q-1)]A1=[(q^3-1)/(q-1)]A1+[(q^6-1)/(q-1)]A1,
∴2q^9=q³+q^6,∴q³(2q³+1)(q³-1)=0,
∴q³=1或-1/2,∴q=1或(-1/2)^(1/3),
当q=1时,An=A1,则2A8-(A8+A5)=2A1-(A1+A1)=0,得证;
当q=(-1/2)^(1/3)时,An=A1[(-1/2)^(1/3)]^(n-1);
2A8-(A8+A5)
=2×A1[(-1/2)^(1/3)]^(8-1)
-{[A1[(-1/2)^(1/3)]^(2-1)]+[A1[(-1/2)^(1/3)]^(5-1)]}
=(A1/2)(-1/2)^(1/3)-[A1(-1/2)^(1/3)+(-A1/2)(-1/2)^(1/3)]
=(A1/2)(-1/2)^(1/3)-(A1/2)(-1/2)^(1/3)
=0,得证.
看了 等比数列an公比q,前n项和...的网友还看了以下:
若数列an满足a(n+1)=1+1/a(n),且a8=34/21,则a3=必须要根据递推公式依次求 2020-07-09 …
已知数列{an}是公差为d的等差数列,Sn是其前n项和,且有S9<S8=S7,则下列说法不正确的是 2020-07-09 …
(an)为公差为d的等差数列,且有S9<S10=S7则下列说不正确(A、S9<S10B、d 2020-07-09 …
已知a1,a2,…,a8为各项都大于零的等比数列,公式q≠1,则()A.a1+a8>a4+a5B. 2020-07-09 …
已知数列a,a3=-6,a8=4,求通项公式,求满足a小于等于0的值 2020-07-09 …
若(x-a)8=a+a1x+a2x2+…+a8x8,,且a5=56,则a+a1+a2+…+a8=() 2020-10-31 …
有一道计算题:(-a4)2,李老师发现全班有以下四种解法:①(-a4)2=(-a4)(-a4)=a4 2020-10-31 …
下列各式:(1)b5•b5=2b5;(2)(-2a2)2=-4a4;(3)(an-1)3=a3n-1 2020-10-31 …
cobol截取字符串问题例如MOVEA(4:3)TOB,其中A是S9(6)comp-3型,B是9(3 2020-12-02 …
等差数列{an}的前n项和为Sn,已知S9<0,S11>0,那么下列结论正确的是()A.S9+S10 2020-12-23 …