早教吧作业答案频道 -->其他-->
在矩形ABCD中,角ABC的平分线交AC于点M,ME垂直于AB,MF垂直于BC,垂足为E,F,试判断四边形EBFM的形状?
题目详情
在矩形ABCD中,角ABC的平分线交AC于点M,ME垂直于AB,MF垂直于BC,垂足为E,F,试判断四边形EBFM的形状?
▼优质解答
答案和解析
证明1:
因为ME⊥AB,MF⊥BC,
∠ABC是直角,
所以可证得四边形EBFM是矩形.
因为BM平分∠ABC,而MF⊥BC,
可证得三角形BFM为等腰直角三角形.
所以BM=BF.
所以四边形EBFM是正方形.(有一组临边相等的矩形是正方形)
证明2:由于DE平行AC,CE平行DB,
所以∠EDC=∠OCD(1),
∠ECD=∠ODC(2),
并且四边形ODCE是平行四边形(3),
由于线段DC是△ODC和△EDC的公共边,且(1)(2)
可知△ODC≌△EDC(角边角定理)
所以OC=CE,再由于(3)
可知四边形DOCE是菱形(有一组邻边相等的平行四边形叫菱形)
由于有的符号我没法打,你根据这个改变成可以用的格式:)
【如果我的回答给你解决了 问题,请在我的回答下面选我为满意答案】
因为ME⊥AB,MF⊥BC,
∠ABC是直角,
所以可证得四边形EBFM是矩形.
因为BM平分∠ABC,而MF⊥BC,
可证得三角形BFM为等腰直角三角形.
所以BM=BF.
所以四边形EBFM是正方形.(有一组临边相等的矩形是正方形)
证明2:由于DE平行AC,CE平行DB,
所以∠EDC=∠OCD(1),
∠ECD=∠ODC(2),
并且四边形ODCE是平行四边形(3),
由于线段DC是△ODC和△EDC的公共边,且(1)(2)
可知△ODC≌△EDC(角边角定理)
所以OC=CE,再由于(3)
可知四边形DOCE是菱形(有一组邻边相等的平行四边形叫菱形)
由于有的符号我没法打,你根据这个改变成可以用的格式:)
【如果我的回答给你解决了 问题,请在我的回答下面选我为满意答案】
看了 在矩形ABCD中,角ABC的...的网友还看了以下:
如图,在平行四边形ABCD中,AB=8,tanB=2,CE垂直AB,垂足为E(点E在边AB上),F 2020-05-16 …
(2011•昆明)如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F 2020-07-12 …
四边形ABCD中,AB等于BC.BE垂直于AD垂足为E.角BCD减角ABE等于90度,过点C作CF 2020-07-13 …
已知函数f(x)满足f(1+x)=f(1-x),且对任意的x1,x2>1(x1≠x2),有f(x1 2020-07-14 …
200分设函数f(x)=cosx/4(sinx/4+cosx/4)-1/2(1),求函数y=f(x 2020-07-17 …
如果凸n边形F(n≥4)的所有对角线都相等,那么A.F∈{四边形}B.F∈{五边形}C.F∈{四边 2020-07-25 …
如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足 2020-07-30 …
角坐标系中,过第一象限内的点C向两轴分别做垂线段,垂足分别为A、B,OB=4,D为边OB的中点.( 2020-08-03 …
一道关于导数的问题!已知函数f(x)=x^2+bx+c(b,c∈R),对任意的X∈R,恒有f(x) 2020-08-03 …
走过路过,帮个忙啊.已知在梯形ABCD中,AD‖BC,AD〈BC,且BC=6,AB=DC=4E是AB 2020-11-27 …