早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=15x2+16x+23,L为曲线C:y=f(x)在点(-1,112)处的切线.(1)求L的方程;(2)当x<-15时,证明:除切点(-1,112)之外,曲线C在直线L的下方;(3)设x1,x2,x3∈R,且满足x1+x2

题目详情
设函数f(x)=
1
5x2+16x+23
,L为曲线C:y=f(x)在点(-1,
1
12
)处的切线.
(1)求L的方程;
(2)当x<-
1
5
时,证明:除切点(-1,
1
12
)之外,曲线C在直线L的下方;
(3)设x1,x2,x3∈R,且满足x1+x2+x3=-3,求f(x1)+f(x2)+f(x3)的最大值.
▼优质解答
答案和解析
(1)∵f(x)=
1
5x2+16x+23

f′(x)=−
10x+16
(5x2+16x+23)2

f′(−1)=−
1
24

∴L的方程为y−
1
12
=−
1
24
(x+1),即y=−
1
24
x+
1
24

(2)证明:要证除切点(-1,
1
12
)之外,曲线C在直线L的下方,
只需证明∀x∈(−∞,−1)∪(−1,−
1
5
),
1
5x2+16x+23
<−
1
24
x+
1
24
恒成立.
∵5x2+16x+23>0,
∴只需证明∀x∈(−∞,−1)∪(−1,−
1
5
),5x3+11x2+7x+1<0恒成立即可.
g(x)=5x3+11x2+7x+1(x≤
1
5
),
则g′(x)=15x2+22x+7=(x+1)(15x+7).
令g′(x)=0,解得x1=-1,x2=−
7
15

x∈(−∞,−1),(−
7
15
,−
1
5
)时,g′(x)>0,g(x)为增函数;
x∈(−1,−
7
15
)时,g′(x)<0,g(x)为减函数.
∴明∀x∈(−∞,−1)∪(−1,−
1
5
),5x3+11x2+7x+1<0恒成立;
(3)①当x1<−
1
5
,x2<−
1
5
,x3<−
1
5
时,
由(2)知,f(x1)=
1
5x12+16x1+23
≤−
1
24
x1+
1
24

f(x2)=
1
5x22+16x2+23
≤−
1
24
x2+
1
24

f(x3)=
1
5x32+16x3+23
≤−
1
24
x3+
1
24

三式相加得:f(x1)+f(x2)+f(x3)≤−
1
24
(x1+x2+x3)+
1
8

∵x1+x2+x3=-3,
f(x1)+f(x2)+f(x3)≤
1
4
,当且仅当x1=x2=x3=-1时取等号.
②当x1,x2,x3中至少有一个大于等于
1
5
时,
不妨设x1≥−
1
5
,则5x12+16x1+23=5(x1+
8
5
)2+
51
5
≥5(−
1
5
+
8
5
)2+
51
5
=20,
5x22+16x2+23=5(x2+
8
5
)2+
51
5
51
5
5x32+16x3+23=5(x3+
8
5
)2+
51
5
51
5

f(x1)+f(x2)+f(x3)≤
1
20
+
5
21
+
5
21
1
4

综上所述,当x1=x2=x3=-1时,f(x1)+f(x2)+f(x3)取到最大值
1
4