早教吧作业答案频道 -->数学-->
设一个三角形的三边长分别为x,y,根号(x^2-xy+y^2),求最长边与最短边的夹角.
题目详情
▼优质解答
答案和解析
设x>y>0
1、x>y>0
xy>y^2
0>-xy+y^2
x^2>x^2-xy+y^2
x>根号(x^2-xy+y^2)
2、x>y>0
x^2>xy
x^2-xy>0
x^2-xy+y^2>y^2
根号(x^2-xy+y^2)>y
所以三角形的三边关系是:x>根号(x^2-xy+y^2)>y>0
那么最长边与最短边的夹角就是x与y的夹角
cosα=(x^2+y^2-x^2+xy-y^2)/(2xy)=1/2
夹角是60度
1、x>y>0
xy>y^2
0>-xy+y^2
x^2>x^2-xy+y^2
x>根号(x^2-xy+y^2)
2、x>y>0
x^2>xy
x^2-xy>0
x^2-xy+y^2>y^2
根号(x^2-xy+y^2)>y
所以三角形的三边关系是:x>根号(x^2-xy+y^2)>y>0
那么最长边与最短边的夹角就是x与y的夹角
cosα=(x^2+y^2-x^2+xy-y^2)/(2xy)=1/2
夹角是60度
看了设一个三角形的三边长分别为x,...的网友还看了以下:
1、已知y=y1+y2,y1与x-1成正比例,y2与x成反比例,并且当x=1时,y=2;当x=2时, 2020-03-31 …
已知函数f(x)=x+根号2/x的定义域为(0,+),设点P是函数f(x)图象上的任意一点已知函数 2020-05-12 …
设函数f(x)=x+a/x定义域为(0,+∞),且f(2)=5/2.设点P是函数图像上的任意一点, 2020-05-12 …
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M 2020-05-16 …
抛物线y=x的平方向下平移后,设他与x轴的两个交点分别位A B 且抛物线的顶点为C抛物线y=x的平 2020-05-16 …
在QuidwayS3026交换机上可以对用户进行优先级别的设定,目前支持的最高优先级是() 2020-05-31 …
高数微积分设两种产品的需求量分别是x,y,相应的价格分别为p、q,已知x=1-p+2q,y=11+ 2020-06-14 …
如图,已知直线l的函数表达式为y=34x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、 2020-06-14 …
如图所示,在平面直角坐标系中,直线y=x+1与y=-34x+3分别交x轴于点B和点C,点D是直线y 2020-06-14 …
2已知函数f(x)=x+a/x的定义域为(0,+无穷),且f(2)=2+√2/2.设点2已知函数f 2020-06-25 …