早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平行四边形ABCD中,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.

题目详情
如图,在平行四边形ABCD中,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.
▼优质解答
答案和解析
证明:方法一:∵AE=AD,CF=CB,
∴∠E=∠ADE,∠CBF=∠F.
在▱ABCD中,∠ADC=∠ABC,
∴∠ADE=∠CBF.
∴∠E=∠F.
在▱ABCD中,CD∥AB,
∴∠E+∠EAF=180°,
∴∠F+∠EAF=180°.
∴AE∥CF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
方法二(主要步骤):
∵四边形ABCD是平行四边形,
∴AD=BC,∠ADC=∠ABC,
又∵AE=AD,CF=CB,
∴AE=AD=CF=CB,
∴∠E=∠ADE=∠F=∠CBF,
∴△ADE≌△CBF(SAS),
∴DE=BF,
∴CE=AF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.