早教吧作业答案频道 -->数学-->
已知以x为自变量的二次函数y=x2+2mx+m-7.(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点;(2)若二次函数的图象与x轴的两个交点在点(1,0)的两侧,关于x的一元二次方
题目详情
已知以x为自变量的二次函数y=x2+2mx+m-7.
(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点;
(2)若二次函数的图象与x轴的两个交点在点(1,0)的两侧,关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,且m为整数,求m的值;
(3)在(2)的条件下,关于x的另一方程x2+2(a+m)x+2a-m2+6 m-4=0有大于0且小于5的实数根,求a的整数值.
(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点;
(2)若二次函数的图象与x轴的两个交点在点(1,0)的两侧,关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,且m为整数,求m的值;
(3)在(2)的条件下,关于x的另一方程x2+2(a+m)x+2a-m2+6 m-4=0有大于0且小于5的实数根,求a的整数值.
▼优质解答
答案和解析
(1)证明:令x2+2mx+m-7=0.
得△=(2m)2-4(m-7)=4(m−
)2+27.
∵不论m为任何实数,都有4(m−
)2+27>0,即△>0.
∴方程有两个不相等的实数根.
∴不论m为任何实数,二次函数的图象与x轴都有两个交点;(2分)
(2)∵二次函数图象的开口向上,且与x轴的两个交点在点(1,0)的两侧,
∴当x=1时,y=12+2m+m-7<0.
解得m<2.①(3分)
∵关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,
∴△=(2m+3)2-4m2≥0,且m2≠0.
解得m≥−
,且m≠0.②(4分)
∵m为整数,由①,②可得m的值是1;(5分)
(3)当m=1时,方程x2+2(a+m)x+2a-m2+6m-4=0为x2+2(a+1)x+2a+1=0.
由求根公式,得x=
.
∴x=-2a-1或x=-1.(6分)
∵方程有大于0且小于5的实数根,
∴0<-2a-1<5.
∴-3<a<−
.
∴a的整数值为-2,-1.(7分)
得△=(2m)2-4(m-7)=4(m−
1 |
2 |
∵不论m为任何实数,都有4(m−
1 |
2 |
∴方程有两个不相等的实数根.
∴不论m为任何实数,二次函数的图象与x轴都有两个交点;(2分)
(2)∵二次函数图象的开口向上,且与x轴的两个交点在点(1,0)的两侧,
∴当x=1时,y=12+2m+m-7<0.
解得m<2.①(3分)
∵关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,
∴△=(2m+3)2-4m2≥0,且m2≠0.
解得m≥−
3 |
4 |
∵m为整数,由①,②可得m的值是1;(5分)
(3)当m=1时,方程x2+2(a+m)x+2a-m2+6m-4=0为x2+2(a+1)x+2a+1=0.
由求根公式,得x=
−2(a+1)±2a |
2 |
∴x=-2a-1或x=-1.(6分)
∵方程有大于0且小于5的实数根,
∴0<-2a-1<5.
∴-3<a<−
1 |
2 |
∴a的整数值为-2,-1.(7分)
看了 已知以x为自变量的二次函数y...的网友还看了以下:
坐标轴与图象在同一个直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)B(3,0)和C(0 2020-03-30 …
对于反比例函数y=k/x,因为x≠0,即函数图象上所有点的坐标都不为0,所以图像与轴不相交;又因为 2020-04-08 …
数学题: 已知抛物线y=x²+bx+c交x轴于A(1,0),B(3,0), 交y轴于点C,其顶点为 2020-05-13 …
如图,在平面直角坐标系中,点A(2,3)为二次函数y=ax2+bx-2(a≠0)与反比例函数y=k 2020-05-14 …
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线 2020-05-20 …
若把直角坐标系中的双曲线y=2x向上平移2个单位,那么会出现()A.与x轴的交点为(-1,0),与 2020-06-03 …
如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B 2020-06-12 …
一元二次方程有解条件的疑问在一元二次方程中,就是二次函数与x轴交点的两个横坐标即为它的解.书上说: 2020-07-07 …
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E 2020-07-31 …
已知圆C与两坐标轴都相切,圆心C到直线y=-x的距离等于根号21、求圆C的方程2、若直线l与x轴正 2020-07-31 …