早教吧作业答案频道 -->数学-->
数列an的每一项都为正数,a1=1/2,a2=4/5,且对满足m+n=p+q的正整数m,n,p,q都有(am+an)/[(1+am)(1+an)]=(ap+aq)/[(1+ap)(1+aq)],记bn=(1-an)/(1+an),证明bn是等比,并由此求数列an的通项
题目详情
数列an的每一项都为正数,a1=1/2,a2=4/5,且对满足m+n=p+q的正整数m,n,p,q都有(am+an)/[(1+am)(1+an)]=(ap+aq)/[(1+ap)(1+aq)],记bn=(1-an)/(1+an),证明bn是等比,并由此求数列an的通项
▼优质解答
答案和解析
按题意,b1*bn=(1-a1)(1-an)/[(1+a1)(1+an)]=1-2(a1+an)/[(1+a1)(1+an)],b2*bn-1=(1-a2)(1-an-1)/[(1+a2)(1+an-1)]=1-2(a2+an-1)/[(1+a2)(1+an-1)],由题目条件可知(a1+an)/[(1+a1)(1+an)]=(a2+an-1)/[(1+a2)(1+an-1)],因此b1*bn=b2*bn-1,bn/bn-1=b2/b1=(1/9)/(1/3)=1/3,因此bn是首项为1/3,公比为1/3的等比数列.由bn=(1-an)/(1+an),可知an=(1-bn)/(1+bn),而bn的通项公式为bn=(1/3)^n,因此an的通项为an=[1-(1/3)^n]/[1+(1/3)^n].
看了 数列an的每一项都为正数,a...的网友还看了以下:
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(a 2020-05-13 …
已知数列{an}满足a1=1,a2=3,an+1=4an−3an−1(n∈N*且n≥2).(Ⅰ)证 2020-05-13 …
设数列{an}(n∈N)满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2. 2020-05-13 …
已知数列an满足:an>0,且对一切n属于N*,有a1^3+a2^3+…+an^3=Sn^2,其中 2020-05-17 …
在数列{an}中,a1=0,且对任意k∈N*,a2k-1.、a2k、a2k-1在数列{an}中,a 2020-05-17 …
已知数列{an}满足an>0且对一切n∈N*,有a13+a23+…+an3=Sn2,a1+a2+… 2020-06-12 …
在数列an中,a1=1,且对任意实数n∈N*,都有,an+1=an+2^n,(1)求证:数列an/ 2020-06-27 …
已知数列{an}的前n项和为Sn,且Sn=2an-n(n属于N*)(1)求数列an的通项公式(2) 2020-07-09 …
设各项均为正数的无穷数列{an},{bn}满足:对任意n∈N*都有2bn=an+an+1且an+1 2020-07-16 …
已知数列an中,an>0,且对于任意正整数n有sn=1/2(an+1/an),求通项公式an及sn 2020-07-21 …