早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}是首项为2的等差数列,其前n项和Sn满足4Sn=an.an+1,数列{bn}是以1/2为首项的等比数列,且b1b2b3=1/64.(I)求数列{an},{bn}的通项公式。(II)设数列{bn}的前n项和为Tn,若对任意n∈N*

题目详情
已知数列{an}是首项为2的等差数列,其前n项和Sn满足4Sn=an.an+1,数列{bn}是以1/2为首项的等比数列,且b1b2b3=1/64.
(I)求数列{an},{bn}的通项公式。
(II)设数列{bn}的前n项和为Tn,若对任意n∈N*不等式1/S1+1/S2+...+1/Sn≥λ/4-Tn/2恒成立,求λ的取值范围。
说明:a,b,S,T右侧的n是它们的下标。
求详解,要步骤。谢谢
▼优质解答
答案和解析

(1)
设{an}公差为d,{bn}公比为q
4Sn=an·a(n+1)
4S(n+1)=a(n+1)·a(n+2)
4S(n+1)-4Sn=4a(n+1)=a(n+1)·a(n+2)-an·a(n+1)
a(n+2)-an=2d=4
d=2
an=a1+(n-1)d=2+2(n-1)=2n
b1b2b3=b2³=1/64
b2=1/4
b2/b1=q=(1/4)/(1/2)=1/2
bn=b1q^(n-1)=(1/2)(1/2)^(n-1)=1/2ⁿ
数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=1/2ⁿ
(2)
4Sn=an·a(n+1)=2n·2(n+1)=4n(n+1)
1/Sn=1/[n(n+1)]
1/S1+1/S2+...+1/Sn
=1/(1·2)+1/(2·3)+...+1/[n(n+1)]
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1- 1/(n+1)
=n/(n+1)
Tn=(1/2)(1-1/2ⁿ)/(1-1/2)=1-1/2ⁿ
1/S1+1/S2+...+1/Sn≥λ/4 -Tn/2
n/(n+1)≥λ/4 -(1-1/2ⁿ)/2
λ ≤4n/(n+1)+2 -2/2ⁿ
4(n+1)/(n+2)+2 -2/2^(n+1) -[4n/(n+1)+2 -2/2ⁿ]
=4(n+1)/(n+2)-4n/(n+1) +1/2ⁿ
=4[(n+1)²-n(n+2)]/[(n+1)(n+2)]+1/2ⁿ
=4/[(n+1)(n+2)]+1/2ⁿ>0
即随n增大,4n/(n+1)+2 -2/2ⁿ单调递增,要不等式λ ≤4n/(n+1)+2 -2/2ⁿ恒成立,只要n取最小值时不等式成立,n=1时,4n/(n+1)+2 -2/2ⁿ=4/(1+1) +2 -2/2=3
λ ≤3