早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的前n项和为Sn,满足an=1-2Sn,(n∈N*)(Ⅰ)证明数列{bn}为等比数列;(Ⅱ)设bn=n(an-1),求数列{bn}的前n项和Tn.

题目详情
已知数列{an}的前n项和为Sn,满足an=1-2Sn,(n∈N*
(Ⅰ)证明数列{bn}为等比数列;
(Ⅱ)设bn=n(an-1),求数列{bn}的前n项和Tn
▼优质解答
答案和解析
(I)证明:∵数列{an}的前n项和为Sn,满足an=1-2Sn
∴n≥2时,an-1=1-2Sn-1
两式相减得:an-an-1=-2(Sn-Sn-1)=-2an
an
an−1
1
3
,n≥2,
又n=1时,an=1-2S1=1-2a1,解得a1=
1
3

∴数列{an}为首项为
1
3
,公比为
1
3
的等比数列.
(II)由(I)知an=
1
3n

∴bn=n(an-1)=n•
1
3n
−n,
∴Tn=(1×
1
3
−1)+(2×
1
32
−2)+…+(n•
1
3n
−n)
=(
1
3
+2×
1
32
+…+n×
1
3n
)-
n(n+1)
2

令Pn=
1
3
+2×
1
32
+…+n×
1
3n
,(1)
1
3
Pn=
1
32
+2×
1
33
+…+n×
1
3n+1
,(2)
(1)-(2),得
2
3
Pn=
1
3
+
1
32
+
1
33
+…+
1
3n
-
1
3n+1

=
1
3
(1−
1
3n
)
1−
1
3
-
1
3n+1

=
1
2
1
2
×
1
3n
−n×
1
3n+1

∴Pn=
3
4
n+9
3n+1

Tn=
3
4
n+9
3n+1
n(n+1)
2