早教吧 育儿知识 作业答案 考试题库 百科 知识分享

抛物线焦点过抛物线Y2=2PX(P大于0)的焦点的一条直线与这条抛物线相交于A,B两点,求证:这两个交点到X轴的距离的乘积是常数

题目详情
抛物线焦点
过抛物线Y2=2PX(P大于0)的焦点的一条直线与这条抛物线相交于A,B两点,求证:这两个交点到X轴的距离的乘积是常数
▼优质解答
答案和解析
设直线AB:y=k(x-p/2) (k不为0)
联立y²=2px和y=k(x-p/2)得:
y²-(2p/k)y+p²=0
设此方程的两根为y₁,y₂,则A和B两点的纵坐标分别为y₁,y₂
所以:y₁*y₂ = p² (定值)