早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知双曲线x2a2-y2b2=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又|OA|=2|OB|,OA•OC=2过点F的直线与双曲线右支交于点M、N,点P为点M关

题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又|OA|=2|OB|,
OA
OC
=2过点F的直线与双曲线右支交于点M、N,点P为点M关于轴的对称点.
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又|OA|=2|OB|,
OA
OC
=2过点F的直线与双曲线右支交于点M、N,点P为点M关于轴的对称点.
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
x2
a2
x2x2x2x22a2a2a2a22
y2
b2
y2y2y2y22b2b2b2b22
OA
OC
=2过点F的直线与双曲线右支交于点M、N,点P为点M关于轴的对称点.
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
OA
OAOA
OC
OCOC

▼优质解答
答案和解析
(Ⅰ)A(a,0),B (
a2
c
,0)
|
OA
|=2|
OB
|⇒ 
a2
c
=
a
2
(1)
x=
a2
c
y=
b
a
x
⇒C(
a2
c
ab
c
),
OA
OC
=2⇒
a2
c
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
x2
4
-
y2
12
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
x2
4
-
y2
12
=1
x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
(
a2
c
a2a2a22ccc,0)
|
OA
|=2|
OB
|⇒ 
a2
c
=
a
2
(1)
x=
a2
c
y=
b
a
x
⇒C(
a2
c
ab
c
),
OA
OC
=2⇒
a2
c
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
x2
4
-
y2
12
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
x2
4
-
y2
12
=1
x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
|
OA
OAOAOA|=2|
OB
OBOBOB|⇒ 
a2
c
a2a2a22ccc=
a
2
aaa222(1)
x=
a2
c
y=
b
a
x
⇒C(
a2
c
ab
c
),
OA
OC
=2⇒
a2
c
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
x2
4
-
y2
12
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
x2
4
-
y2
12
=1
x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
x=
a2
c
y=
b
a
x
x=
a2
c
y=
b
a
x
x=
a2
c
y=
b
a
x
x=
a2
c
y=
b
a
x
x=
a2
c
x=
a2
c
x=
a2
c
a2a2a22cccy=
b
a
xy=
b
a
xy=
b
a
bbbaaax⇒C(
a2
c
a2a2a22ccc,
ab
c
abababccc),
OA
OC
=2⇒
a2
c
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
x2
4
-
y2
12
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
x2
4
-
y2
12
=1
x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
OA
OAOAOA•
OC
OCOCOC=2⇒
a2
c
a2a2a22ccc=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
x2
4
-
y2
12
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
x2
4
-
y2
12
=1
x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
x2
4
x2x2x22444-
y2
12
y2y2y22121212=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
x2
4
-
y2
12
=1
x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
x2
4
-
y2
12
=1
x=ty+4
x2
4
-
y2
12
=1
x=ty+4
x2
4
-
y2
12
=1
x=ty+4
x2
4
-
y2
12
=1
x=ty+4
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1
x2
4
x2x2x22444-
y2
12
y2y2y22121212=1x=ty+4x=ty+4x=ty+4⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2+24ty+36=0
设M(x11,y11),N(x22,y22),
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
P(x1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
1,-y1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1

BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
1)∴
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1
y1+y2=
-24t
3t2-1
y1y2=
36
3t2-1
y1+y2=
-24t
3t2-1
y1+y2=
-24t
3t2-1
y1+y2=
-24t
3t2-1
1+y2=
-24t
3t2-1
2=
-24t
3t2-1
-24t-24t-24t3t2-13t2-13t2-12-1y1y2=
36
3t2-1
y1y2=
36
3t2-1
y1y2=
36
3t2-1
1y2=
36
3t2-1
2=
36
3t2-1
3636363t2-13t2-13t2-12-1
BP
=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
BP
BPBPBP=(x1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
1-1,-y1),
BN
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
1),
BN
BNBNBN=(x2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2-1,y2)(x1-1)y2-(x2-1)(-y1
=x1y2+x2y1-(y1+y2
=(ty1+4)y2+(ty2+4)y1-(y1+y2
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2)(x11-1)y22-(x22-1)(-y11)
=x11y22+x22y11-(y11+y22)
=(ty11+4)y22+(ty22+4)y11-(y11+y22)
=2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2ty1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
1y2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2+3(y1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
1+y2)=2t
36
3t2-1
+3
-24
3t2-1
=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
2)=2t
36
3t2-1
3636363t2-13t2-13t2-12-1+3
-24
3t2-1
-24-24-243t2-13t2-13t2-12-1=0
所以向量
BP
BN
共线,
即B、P、N三点共线.
BP
BPBPBP与
BN
共线,
即B、P、N三点共线.
BN
BNBNBN共线,
即B、P、N三点共线.