早教吧作业答案频道 -->数学-->
已知函数f(x)=kex+b(k,b∈R)(其中e是自然对数的底数)的导数为f′(x),f′(1)+f(1)=2e,且f(x)在x=1处的切线过原点.(1)求函数f(x)的解析式;(2)设g(x)=x2+ax+1(a∈R),
题目详情
已知函数f(x)=kex+b(k,b∈R)(其中e是自然对数的底数)的导数为f′(x),f′(1)+f(1)=2e,且f(x)在x=1处的切线过原点.
(1)求函数f(x)的解析式;
(2)设g(x)=x2+ax+1(a∈R),若对∀x1,x2∈[0,2],x1>x2,均有|f(x1)-f(x2)|>g(x1)-g(x2),求实数a的取值范围.
(1)求函数f(x)的解析式;
(2)设g(x)=x2+ax+1(a∈R),若对∀x1,x2∈[0,2],x1>x2,均有|f(x1)-f(x2)|>g(x1)-g(x2),求实数a的取值范围.
▼优质解答
答案和解析
(1)函数f(x)=kex+b的导数为f′(x)=kex,
f(x)在x=1处的切线斜率为ke,
切点为(1,ke+b),即有ke=ke+b,
解得b=0,
由f′(1)+f(1)=2e,
即为ke+ke+b=2e,
解得k=1,
则f(x)的解析式为f(x)=ex;
(2)由f(x)在[0,2]递增,且x1>x2,
可得|f(x1)-f(x2)|=f(x1)-f(x2),
|f(x1)-f(x2)|>g(x1)-g(x2),
即为f(x1)-g(x1)>f(x2)-g(x2),
可令h(x)=f(x)-g(x),即有h(x)在[0,2]递增,
由h(x)=ex-x2-ax-1,h′(x)=ex-2x-a,
即有h′(x)≥0在[0,2]恒成立.
即为a≤ex-2x的最小值.
由ex-2x的导数为ex-2,当ln2当0≤x可得x=ln2时取得最小值,且为2-2ln2.
则a≤2-2ln2.
即有a的取值范围是(-∞,2-2ln2].
f(x)在x=1处的切线斜率为ke,
切点为(1,ke+b),即有ke=ke+b,
解得b=0,
由f′(1)+f(1)=2e,
即为ke+ke+b=2e,
解得k=1,
则f(x)的解析式为f(x)=ex;
(2)由f(x)在[0,2]递增,且x1>x2,
可得|f(x1)-f(x2)|=f(x1)-f(x2),
|f(x1)-f(x2)|>g(x1)-g(x2),
即为f(x1)-g(x1)>f(x2)-g(x2),
可令h(x)=f(x)-g(x),即有h(x)在[0,2]递增,
由h(x)=ex-x2-ax-1,h′(x)=ex-2x-a,
即有h′(x)≥0在[0,2]恒成立.
即为a≤ex-2x的最小值.
由ex-2x的导数为ex-2,当ln2
则a≤2-2ln2.
即有a的取值范围是(-∞,2-2ln2].
看了 已知函数f(x)=kex+b...的网友还看了以下:
有一个正方形线圈的匝数为10匝,边长为20cm,线圈总电阻为1Ω,线圈绕OO′轴以10πrad/s 2020-05-15 …
matlab求曲线线性拟合问题x:1 2 3 4 5y:4 4.5 6 8 10权函数值均为1求线 2020-05-16 …
求f(x)=1/(1+sinx)的定义域=已知直线y=kx-1交抛物线y^2=4x于P,Q两点,若 2020-06-02 …
1883年,德国数学家格奥尔格•康托尔引入位于一条线段上的一些点的集合,它的做法如下:取一条长度为 2020-06-17 …
如图,取一条长度为1的线段AB,把线段AB三等分,以中间一段为边做等边三角形,然后去掉这一段,就得 2020-07-20 …
已知直线x-y-3=0与圆x^2+y^2-2x=0相离,在圆上求一点,使它与直线的距离最短,并求这 2020-07-22 …
长度为1的线段AB(B在A的右边)在x轴上移动,点P(0,1)与A点连成直线PA,点Q(1,2)与 2020-08-01 …
图上画出2根线段,相交与1点,求这点的坐标2跟线段的另一头分别为(0,0)和(5,3),线段1的斜率 2020-11-30 …
在直角坐标系中,直线Y=KX与双曲线在直角坐标系中,直线Y=KX与双曲线Y=K除以X在第一象限的交点 2020-12-31 …
一矩形线圈abcd处在磁感应强度为B的匀强磁场中,磁场方向与ab垂直,当线圈以角速度ω转动时,感应电 2021-02-03 …