早教吧作业答案频道 -->其他-->
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x+2x+alnx(a∈R)(1)判断f(x)在(0,1]上是
题目详情
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=
在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x+
+alnx(a∈R)
(1)判断f(x)在(0,1]上是否是“非完美增函数”;
(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.
f(x) |
x |
2 |
x |
(1)判断f(x)在(0,1]上是否是“非完美增函数”;
(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.
▼优质解答
答案和解析
(1)由于f(x)=lnx,在(0,1]上是增函数,且F(x)=
=
,
∵F′(x)=
,∴当x∈(0,1]时,F′(x)>0,F(x)为增函数,
∴f(x)在(0,1]上不是“非完美增函数”;
(2)∵g(x)=2x+
+alnx,
∴g′(x)=2-
+
=
,
∵g(x)是[1,+∞)上的“非完美增函数”,
∴g′(x)≥0在[1,+∞)上恒成立,
∴g′(1)≥0,∴a≥0,
又G(x)=
=2+
+
在[1,+∞)上是减函数,
∴G′(x)≤0在[1,+∞)恒成立,即-
+
≤0在[1,+∞)恒成立,
即ax-axlnx-4≤0在[1,+∞)恒成立,
令p(x)=ax-axlnx-4,则p′(x)=-alnx≤0恒成立(∵a≥0,x≥1),
∴p(x)=ax-axlnx-4在[1,+∞)上单调递减,
∴p(x)max=p(1)=a-4≤0,解得:a≤4;
综上所述0≤a≤4.
f(x) |
x |
lnx |
x |
∵F′(x)=
1−lnx |
x2 |
∴f(x)在(0,1]上不是“非完美增函数”;
(2)∵g(x)=2x+
2 |
x |
∴g′(x)=2-
2 |
x2 |
a |
x |
2x2+ax−2 |
x2 |
∵g(x)是[1,+∞)上的“非完美增函数”,
∴g′(x)≥0在[1,+∞)上恒成立,
∴g′(1)≥0,∴a≥0,
又G(x)=
g(x) |
x |
2 |
x2 |
alnx |
x |
∴G′(x)≤0在[1,+∞)恒成立,即-
4 |
x3 |
a(1−lnx) |
x2 |
即ax-axlnx-4≤0在[1,+∞)恒成立,
令p(x)=ax-axlnx-4,则p′(x)=-alnx≤0恒成立(∵a≥0,x≥1),
∴p(x)=ax-axlnx-4在[1,+∞)上单调递减,
∴p(x)max=p(1)=a-4≤0,解得:a≤4;
综上所述0≤a≤4.
看了 若函数f(x)是定义域D内的...的网友还看了以下:
下列选项中,f(x)与g(x)表示同一函数的是()A.f(x)=x0,g(x)=1B.f(x)=x 2020-05-14 …
对于函数f(x),g(x),如果它们的图象有公共点P,且在点P处的切线相同,则称函数f(x)和g( 2020-06-11 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
1已知函数f(x)=1/√1-x^2的定义或为G,函数G(x)=1/√2+x-6x^2的定义或为H 2020-06-29 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
已知函数f(x)=ex,g(x)=mx+n.(1)设h(x)=f(x)-g(x).当n=0时,若函 2020-07-20 …
对于具有相同定义域D的函数f(x)和g(x),若对任意的x∈D,都有|f(x)-g(x)|≤1,则 2020-07-22 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
若对任意的x∈D,均有g(x)≤f(x)≤h(x)成立,则称函数f(x)为函数g(x)到函数h(x) 2020-11-02 …