早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知方程x^2-(tanθ+i)x-(i+2)=0证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.

题目详情
已知方程x^2-(tanθ+i)x-(i+2)=0
证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
▼优质解答
答案和解析
条件“θ≠k∏+∏/2(k∈R)”中应该是 k∈Z,否则 θ 不是实数了 ,tanθ 也就没意义了.
若有纯虚数根x=ai(a为实数,a≠0,i为虚数单位),
代入原方程得 -a²-(tanθ+i)ai-(i+2)=0,即 tanθ=(-a²+a-(i+2))/(ai)
右边分子分母都乘以i,得 tanθ=((-a²i+ai-2i)+1)/(-a)
即 tanθ=(-1/a)+((a²-a+2)/a)i
因为 a为实数,a≠0,所以 (-1/a) 为非零实数,且((a²-a+2)/a)亦为实数,
又a²-a+2=(a-1/2)²+7/4≠0,所以((a²-a+2)/a)为非零实数,
所以 (-1/a)+((a²-a+2)/a)i 为虚数,
但 θ≠kπ+π/2 (k∈Z)时,tanθ为实数,所以 tanθ=(-1/a)+((a²-a+2)/a)i 自相矛盾,所以原方程无纯虚数根.