早教吧作业答案频道 -->其他-->
在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30相加得2S=5•C30+5
题目详情
在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.
▼优质解答
答案和解析
(1)设S=1•C20+2•C21+3•C22又S=3•C22+2•C21+1•C20
相加2S=4(C20+C21+C22)=16,S=8
设S=1•C40+2•C41+3•C42+4•C43+5•C44
又S=5•C44+4•C43+3•C42+2•C41+1•C40
相加2S=6(C30+C41+C42+C43+C44),∴S=3•24=48
(2)1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn=(n+2)•2n-1
设S=1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn
又S=(n+1)Cnn+nCnn-1+…+1•Cn0
相加2S=(n+2)(Cn0+Cn1+…+Cnn)∴S=
•2n=(n+2)•2n−1
(3)当q=1时 Sn=na1S1Cn0+S2Cn1+…+Sn+1Cnn
=a1Cn0+2a1Cn1+…+(n+1)a1Cnn
=a1(1•Cn0+2•Cn1+…+(n+1)Cnn)
=a1•(n+2)•2n-1
当q≠1时 Sn=
=
−
qn
S1Cn0+S2Cn1+S3Cn2+…+Sn+1Cnn=(
−
q)
+(
−
q2)
+…+(
−
qn+1)
=
(
+
+…+
)−
(q
+q2
+…+qn+1
)
=
•2n−
•q(
•q0+
•q1+…+
qn)
=
•2n−
•q(1+q)n=
−
综上,q=1时 S1Cn0+…+Sn+1Cnn=a1(n+2)•2n-1q≠1时S1
+…+Sn+1
=
−
相加2S=4(C20+C21+C22)=16,S=8
设S=1•C40+2•C41+3•C42+4•C43+5•C44
又S=5•C44+4•C43+3•C42+2•C41+1•C40
相加2S=6(C30+C41+C42+C43+C44),∴S=3•24=48
(2)1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn=(n+2)•2n-1
设S=1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn
又S=(n+1)Cnn+nCnn-1+…+1•Cn0
相加2S=(n+2)(Cn0+Cn1+…+Cnn)∴S=
n+2 |
n |
(3)当q=1时 Sn=na1S1Cn0+S2Cn1+…+Sn+1Cnn
=a1Cn0+2a1Cn1+…+(n+1)a1Cnn
=a1(1•Cn0+2•Cn1+…+(n+1)Cnn)
=a1•(n+2)•2n-1
当q≠1时 Sn=
a1(1−qn) |
1−q |
a1 |
1−q |
a1 |
1−q |
S1Cn0+S2Cn1+S3Cn2+…+Sn+1Cnn=(
a1 |
1−q |
a1 |
1−q |
C | 0 n |
a1 |
1−q |
a1 |
1−q |
C | 1 n |
a1 |
1−q |
a1 |
1−q |
C | n n |
=
a1 |
1−q |
C | 0 n |
C | 1 n |
C | n n |
a1 |
1−q |
C | 0 n |
C | 1 n |
C | n n |
=
a1 |
1−q |
a1 |
1−q |
C | 0 n |
C | 1 n |
C | n n |
=
a1 |
1−q |
a1 |
1−q |
a1•2n |
1−q |
a1q(1+q)n |
1−q |
综上,q=1时 S1Cn0+…+Sn+1Cnn=a1(n+2)•2n-1q≠1时S1
C | 0 n |
C | n n |
a1•2n |
1−q |
a1q(1+q)n |
1−q |
看了 在二项式定理这节教材中有这样...的网友还看了以下:
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
真的很急啊..(1)(1/4)x-1/2=3/4(2)(7x-5)/4=3/8(3)(2x-1)/ 2020-05-13 …
1+2+3+n=2分之1n(n+1),n是正整数,研究1*2+2*3+你(n+1),观察1*2=3 2020-05-20 …
分式方程请观察下列方程和它们的根请观察下列方程和它们的根:x+1/x=c+1/c的解是x=c或x= 2020-06-06 …
设向量a=(2,3,4),b=(3,-1,-1),c的模为3,向量c使三向量a,b,c所构成的平行 2020-07-07 …
1+2+1=1+2+3+2+1=1+2+3+4+3+2+1=根据上面的规律,计算1+2+3+1+2 2020-07-18 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
已知sinα+sinβ=1,则cosα+cosβ的值的范围()A.[-2,2]B.[-1,1]C. 2020-08-02 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
Limx→0(1/1-x-3/1-x^3)已经知道lim[1/(1-x)-3/(1-x^3)]=li 2020-10-31 …