早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE.(1)求证:AE∥BC;(2)当AD=AE时,求∠BCE的度数.

题目详情
如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE.
(1)求证:AE∥BC;
(2)当AD=AE时,求∠BCE的度数.
▼优质解答
答案和解析
(1)证明:∵△ABC和△DEC是等边三角形,
∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,
∴∠BCA-∠DCA=∠ECD-∠DCA,
即∠BCD=∠ACE,
∵在△ACE和△BCD中
AC=BC
∠ACE=∠BCD
CD=CE

∴△ACE≌△BCD(SAS),
∴∠EAC=∠B=60°=∠ACB,
∴AE∥BC.

(2)∵AE∥BC,
∴∠EAD+∠B=180°,
∵∠B=60°,
∴∠DAE=120°,
∵AD=AE,
∴∠ADE=∠AED=(180°-120°)÷2=30°.
∵∠DEC=60°,
∴∠AEC=90°,
∵AE∥BC,
∴∠BCE=180°-90°=90°.