早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高数不定积分设f(x)的原函数为F(x)>0,且F(0)=0,当x≥0时,f(x)F(x)=sin^2(2x),求f(x)

题目详情
高数不定积分
设f(x)的原函数为F(x)>0,且F(0)=0,当x≥0时,f(x)F(x)=sin^2(2x),求f(x)
▼优质解答
答案和解析
∫ ƒ(x) dx = F(x)
F'(x) = ƒ(x)
ƒ(x)F(x) = sin²2x = (1 - cos4x)/2,两边积分
∫ ƒ(x)F(x) dx = ∫ [1/2 - (1/2)cos4x] dx
∫ F(x) d[F(x)] = ∫ [1/2 - (1/2)cos4x] dx
(1/2)[F(x)]² = x/2 - (1/8)sin4x + C
[F(x)]² = x - (1/4)sin4x + C
F(x) = √[x - (1/4)sin4x + C]
F(0) = 0 ==> √[0 - 0 + C] = 0 ==> C = 0
F(x) = √[x - (1/4)sin4x]
F'(x) = 2sin²2x/√(4x - sin4x) = ƒ(x)