早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)=2x2-4x-1,设有n个不同的数xi(i=1,2,…,n)满足0≤x1<x2<…<xn≤3,则满足|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|≤M的M的最小值是()A.10B.8C.6D.2

题目详情

已知f(x)=2x2-4x-1,设有n个不同的数xi(i=1,2,…,n)满足0≤x1<x2<…<xn≤3,则满足|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|≤M的M的最小值是(  )

A. 10

B. 8

C. 6

D. 2

▼优质解答
答案和解析
∵f(x)=2x2-4x-1=2(x-1)2-3对任意xi,xj(i,j=1,2,3,…,n),0≤x12<…n≤3,
都有|f(xi)-f(xj)|≤f(x)max-f(x)min=8,
∵|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|≤M,
∴|f(x1)-f(xn)|≤M,
∴M≥8,
∴M的最小值是8,
故选B.