早教吧作业答案频道 -->其他-->
若定义在[-2013,2013]上的函数f(x)满足:对于任意的x1,x2∈[-2013,2013],有f(x1+x2)=f(x1)+f(x2)-2012,且x>0时,有f(x)>2012,f(x)的最大、小值分别为M、N,则M+N的值为()A.2
题目详情
若定义在[-2013,2013]上的函数f(x)满足:对于任意的x1,x2∈[-2013,2013],有f(x1+x2)=f(x1)+f(x2)-2012,且x>0时,有f(x)>2012,f(x)的最大、小值分别为M、N,则M+N的值为( )
A.2011
B.2012
C.4022
D.4024
A.2011
B.2012
C.4022
D.4024
▼优质解答
答案和解析
令x1=x2=0,则f(0+0)=f(0)+f(0)-2012,
∴f(0)=2012,
令-2013≤x1<x2≤2013,且x2-x1=t>0,
则f(x1)-f(x2)=f(x1)-f(x1+t)=f(x1)-f(x1)-f(t)+2012=2012-f(t)
∵t>0,
∴f(t)>2012,
∴2012-f(t)<0,
∴f(x1)<f(x2),
∴函数f(x)在R上为单调递增函数.
令x2=-x1∈[-2013,2013],
则由f(x1+x2)=f(x1)+f(x2)-2012得:f(0)=f(x1)+f(-x1)-2012=2012,
∴f(x1)+f(-x1)=4024.
∵函数f(x)在R上为单调递增函数,
∴M+N=f(-2013)+f(2013)=4024.
故选:D.
∴f(0)=2012,
令-2013≤x1<x2≤2013,且x2-x1=t>0,
则f(x1)-f(x2)=f(x1)-f(x1+t)=f(x1)-f(x1)-f(t)+2012=2012-f(t)
∵t>0,
∴f(t)>2012,
∴2012-f(t)<0,
∴f(x1)<f(x2),
∴函数f(x)在R上为单调递增函数.
令x2=-x1∈[-2013,2013],
则由f(x1+x2)=f(x1)+f(x2)-2012得:f(0)=f(x1)+f(-x1)-2012=2012,
∴f(x1)+f(-x1)=4024.
∵函数f(x)在R上为单调递增函数,
∴M+N=f(-2013)+f(2013)=4024.
故选:D.
看了若定义在[-2013,2013...的网友还看了以下:
已知函数f(x)=-x+3-3a(x小于零),-x的平方+a大于等于零0,满足任意的x1,x2属于 2020-05-14 …
下列命题中的假命题是?A.任意x属于R,2^(1-x)>0B.任意x∈(0,+∞),2^x>x^( 2020-06-20 …
数学概念题.come in设函数f(x)的定义域为R,有下列三个命题1若存在常数M,使得对任意X属 2020-06-27 …
设偶函数f(x)对任意x属于R,都有f(x+3)=-1/f(x)设偶函数f(x)对任意x属于R,都 2020-07-08 …
下列命题中为真命题的是:A:对任意x属于R,x^2+2>0B:对任意x属于N,x^4大于等于1C: 2020-07-09 …
已知a大于0,函数f(x)=ax^2+bx+c,若x0满足关于x的方程2ax+b=0,则假命题是A 2020-07-13 …
已知命题P:任意的X属于R,(m+1)(x^2+1)小于等于0;命题q:任意的x属于R,X^2+m 2020-07-22 …
已知命题p:对任意x属于R,2的x次方小于3的x次方,命题q:存在x属于R,x的三次方=1-x的平 2020-07-29 …
感激不尽.对定义域在S=[1,正无穷)的函数f(x),对任意x属于[1,正无穷)满足对定义域在S=[ 2020-12-09 …
已知函数f(x)对于任意x,y属于R,总有f(x+y)=f(x)+f(y)-1,X>0时.已知函数f 2020-12-22 …