早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,a1=1,且满足anan+1=2Sn,数列{bn}满足b1=16,bn+1-bn=2n,则数列{bnan}中第项最小.
题目详情
已知数列{an}的前n项和为Sn,a1=1,且满足anan+1=2Sn,数列{bn}满足b1=16,bn+1-bn=2n,则数列{
}中第___项最小.
bn |
an |
▼优质解答
答案和解析
当n=1时,2S1=a1a2,即2a1=a1a2,∴a2=2.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∵b1=16,bn+1-bn=2n,∴bn =( bn -bn-1)+( bn-1 -bn-2)+ ( bn-2 -bn-3)+…+( b2 -b1)+b1=n(n-1)+16
=n+
-1,利用基本不等式得n=4时n+
-1最小,∴数列{
}中第 4项最小.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∵b1=16,bn+1-bn=2n,∴bn =( bn -bn-1)+( bn-1 -bn-2)+ ( bn-2 -bn-3)+…+( b2 -b1)+b1=n(n-1)+16
bn |
an |
16 |
n |
16 |
n |
bn |
an |
看了已知数列{an}的前n项和为S...的网友还看了以下:
小学数学题,1-8个数字每个只能用一次小学数学题,1-8八个数字每个只能用一次使等式成立:N/N= 2020-05-13 …
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
当n∈N*时,定义函数N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N( 2020-05-13 …
关于极限的题目a(n)=n*sin(∏/n)(n>=1)当n→∞时,求a(n)(n)为下标a(n) 2020-05-14 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
数列极限lim{((1³+2³+...n³)/n³)-4/n},n趋于无穷的极限?(1³+2³+.. 2020-11-01 …
求数列an=n(n+1)的前n项和.an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+ 2020-12-03 …