早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.(1)求证:CB平分∠PCM;(2)若∠CBA=60°,求证:△ADM为等边三角形;(3)若PO=5,PC=a,⊙O的半径为r,且a,r是

题目详情
如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.
(1)求证:CB平分∠PCM;
(2)若∠CBA=60°,求证:△ADM为等边三角形;
(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x 2 -(2m+1)x+4m=0的两根,求m的值.
▼优质解答
答案和解析
(1)证明:延长CM与圆相交于E,连接OC,OE;
∵CM⊥AB,
CB
=
BE

∴∠COP=∠EOP.
∴∠BCP=
1
2
∠COP,∠MCB=
1
2
∠EOP.
∴∠BCP=∠MCB,CB平分∠PCM.

(2)证明:∵∠CBA=60°,
∴∠1=∠ACD=30°.
∵∠COB是△AOC的外角,
∴∠COB=60°.
又∵AD⊥PC,OC⊥PC,
∴AD ∥ OC,∠DAM=∠COB=60°.
∵△BOC是等边三角形,CM⊥OB,
∴∠BCM=30°.
∵CB平分∠PCM,
∴∠PCB=30°.
∴∠1=∠PCB=30°.
又∵∠DAM=60°,
∴∠DAC=∠1=30°.
∴AC是∠DAM的平分线.
∵∠ADC=∠CMA=90°,
∴CD=CM,△ADC≌△AMC,AD=AM.
∴∠ADM=∠AMD.
又∵∠DAM=60°,
∴∠DAM=∠ADM=∠AMD=60°.
即△ADM为等边三角形;

(3)∵PO=5,PC=a,⊙O的半径为r,
∴在Rt△OCP中,OC 2 +PC 2 =OP 2
即r 2 +a 2 =5 2
∵a,r是关于x的方程x 2 -(2m+1)x+4m=0的两根
∴a+r=2m+1,ar=4m ②
∴(a+r) 2 =a 2 +r 2 +2ar ③
把①②代入③得(2m+1) 2 =25+8m,解得m=3或m=-2(舍去)
故m=3.