早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,设D,E及F分别是△ABC的边AB,BC及CA的中点,∠BDC及∠ADC的角平分线分别交BC及AC于点M,N,直线MN交CD于点O.设EO及FO分别交AC及BC于点P及Q,求证:CD=PQ.

题目详情
如图,设D,E及F分别是△ABC的边AB,BC及CA的中点,∠BDC及∠ADC的角平分线分别交BC及AC于点M,N,直线MN交CD于点O.设EO及FO分别交AC及BC于点P及Q,求证:CD=PQ.
作业帮
▼优质解答
答案和解析
证明:如图:
作业帮
∵DN平分∠ADC,
CN
AN
=
CD
AD

同理
CM
BM
=
CD
BD

∵BD=AD,
CN
AN
=
CM
BM

∴MN∥AB,
ON
AD
=
CO
CD
=
OM
BD

∴ON=OM,
∵E、F分别是AC、BC的中点,
∴EF∥AB,EF=AD=BD,
∴EF∥MN,
ON
EF
=
OP
PE
OM
EF
=
OQ
FQ

PO
PE
=
QO
QF

∴PQ∥EF∥MN∥AB,
过点C作CG∥AB交DM的延长线于点G,如图,
∴∠CGD=∠GDB,
∵∠CDG=∠GDB,
∴∠CDG=∠CGD,
∴CD=CG,
OM
CG
=
OD
CD
OM
BD
=
OC
CD

OM
CG
+
OM
BD
=
OD
CD
+
OC
CD
=
CD
CD
=1,
又∵
ON
EF
=
PN
PF
ON
PQ
=
FN
FP

ON
EF
+
ON
PQ
=
PN
PF
+
NF
PF
=
PF
PF
=1,
∵OM=ON,EF=BD,
∴CG=PQ,
∵CG=CD,
∴CD=PQ.