早教吧作业答案频道 -->数学-->
如图,三角形ABC中,角BAC=90度,AB=AC,AD垂直BC,垂足是D,AE平分角BAD,交BC于点E,在三角形外有一点F,使FA垂直AE,FC垂直BC(1)求证BE=CF(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME求证:1.DE=DN2.ME垂直BC
题目详情
如图,三角形ABC中,角BAC=90度,AB=AC,AD垂直BC,垂足是D,AE平分角BAD,交BC于点E,在三角形外有一点F,使FA
垂直AE,FC垂直BC
(1)求证BE=CF
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME
求证:1.DE=DN
2.ME垂直BC
垂直AE,FC垂直BC
(1)求证BE=CF
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME
求证:1.DE=DN
2.ME垂直BC
▼优质解答
答案和解析
(1)如图,∵∠BAC=90°,FA⊥AE,∴∠1+∠EAC=90°,∠2+∠EAC=90°.
∴∠1=∠2.
又∵AB=AC,∴∠B=∠ACB=45°.
∵FC⊥BC,∴∠FCA=90°-∠ACB=45°.∴∠B=∠FCA.
∴△ABF≌△ACF(ASA).∴BE=CF.
(2)①如图,过E点作EG⊥AB于点G,
∵∠B=45°,∴△CBE是等腰直角三角形.∴BG=EG,∠3=45°.
∵BM=2DE,∴BM=2BG,即点G是BM的中点.∴EG是BM的垂直平分线.∴∠4=∠3=45°.
∴∠MEB=∠4+∠3=90°.∴ME⊥BC.
②∵AD⊥BC,∴ME∥AD.∴∠5=∠6.
∵∠1=∠5,∴∠1=∠6.∴AM=EM.
∵MC=MC,∴Rt△AMC≌Rt△EMC(HL).∴∠7=∠8.
∵∠BAC=90°,AB=AC,∴∠ACB=45°,∠BAD=∠CAD=45°.
∴∠5=∠7=22.5°,AD=CD.
∵∠ADE=∠CDN=90°,∴△ADE≌△CDN(ASA).∴DE=DN.
∴∠1=∠2.
又∵AB=AC,∴∠B=∠ACB=45°.
∵FC⊥BC,∴∠FCA=90°-∠ACB=45°.∴∠B=∠FCA.
∴△ABF≌△ACF(ASA).∴BE=CF.
(2)①如图,过E点作EG⊥AB于点G,
∵∠B=45°,∴△CBE是等腰直角三角形.∴BG=EG,∠3=45°.
∵BM=2DE,∴BM=2BG,即点G是BM的中点.∴EG是BM的垂直平分线.∴∠4=∠3=45°.
∴∠MEB=∠4+∠3=90°.∴ME⊥BC.
②∵AD⊥BC,∴ME∥AD.∴∠5=∠6.
∵∠1=∠5,∴∠1=∠6.∴AM=EM.
∵MC=MC,∴Rt△AMC≌Rt△EMC(HL).∴∠7=∠8.
∵∠BAC=90°,AB=AC,∴∠ACB=45°,∠BAD=∠CAD=45°.
∴∠5=∠7=22.5°,AD=CD.
∵∠ADE=∠CDN=90°,∴△ADE≌△CDN(ASA).∴DE=DN.
看了如图,三角形ABC中,角BAC...的网友还看了以下:
如图点A,B在直线m的同侧,点B'是点B关于m的对称点,AB'交m于点P(1)在m上再取一点Q,并 2020-05-02 …
已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点 2020-05-16 …
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线 2020-06-29 …
如图,A、B分别是x轴和y轴上的点,以AB为直径作⊙M,过M点作AB的垂线交⊙M于点C,C在双曲线 2020-06-29 …
(2005•荆门)已知:如图,抛物线y=13x2-233x+m与x轴交于A、B两点,与y轴交于C点 2020-07-19 …
如图,OA是M的直径,点B在x轴上,连接AB交M于点C.(1)若点A的坐标为(0,2),∠ABO= 2020-07-24 …
如图,O的半径为2,弦AB的长为23,以AB为直径作M,点C是优弧AB上的一个动点,连接AC、BC 2020-07-31 …
(2008•衡阳)如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2 2020-12-25 …
如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2,3),CD为△A 2020-12-25 …
如图,平面直角坐标系中,A(-3,1)B(-1,4)1.求S△AOB2.直线AB交X轴于M点如图,平 2021-01-10 …