早教吧 育儿知识 作业答案 考试题库 百科 知识分享

m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为()A.4B.1C.-2D.-6

题目详情
m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为(  )

A.4
B.1
C.-2
D.-6
▼优质解答
答案和解析
由求根公式可知当一元二次方程根为有理根时判别式的算术平方根比为有理数,
△=(m+1)2+4×2×(3m2-4m+n)
=25m2-30m+1+8n,
要使对任意有理数m,
均为有理数,△必须是m的完全平方式,此方程必定有两个相等的根.
∴△=302-4×25×(1+8n)
=0,
解得n=1.
故选:B