早教吧作业答案频道 -->数学-->
微分中值定理的应用设f(x)在[0,1]可导,且f(0)=f(1)=0.证明存在n(0,1)使f(n)+f"(n)=0
题目详情
微分中值定理的应用
设f(x)在[0,1]可导,且f(0)=f(1)=0.
证明存在n(0,1)使f(n)+f'(n)=0
设f(x)在[0,1]可导,且f(0)=f(1)=0.
证明存在n(0,1)使f(n)+f'(n)=0
▼优质解答
答案和解析
设T(x)=e^x*f(x)
则T'(x)=e^x*f(x)+e^x*f'(x)
由于T(0)=1*f(0)=0,T(1)=e*f(1)=0
所以,利用罗尔中值定理有T'(n)=0
也就是e^n*f(n)+e^n*f'(n)=0
由于e^n>0,所以,约去,最后得到
f(n)+f'(n)=0
结束
则T'(x)=e^x*f(x)+e^x*f'(x)
由于T(0)=1*f(0)=0,T(1)=e*f(1)=0
所以,利用罗尔中值定理有T'(n)=0
也就是e^n*f(n)+e^n*f'(n)=0
由于e^n>0,所以,约去,最后得到
f(n)+f'(n)=0
结束
看了 微分中值定理的应用设f(x)...的网友还看了以下:
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
微分中值定理的应用设f(x)在[0,1]可导,且f(0)=f(1)=0.证明存在n(0,1)使f( 2020-05-13 …
数列叠加法问题回答的详细点必有重谢!(1)当数列的递推公式可以化为an+1-an=f(n)时,取n 2020-05-14 …
函数f定义在正整数集上f(1)=1,f(3)=3,且对每个正整数n都有f(2n)=f(n),f(4 2020-05-16 …
尛朙利用滑轮组提升重为300N旳重物.股数为N=3.若不记滑轮重和摩擦.则拉力F=N时.可以使重物 2020-07-16 …
hdu2569递推式为什么是这样?设当悬崖的长度为n时,到达彼岸的方法有F[n]种.F[1]=3, 2020-07-21 …
一个有关大O(阶)的问题求两个单调递增函数f(n)和g(n)(n为自然数),f(n)≠O(g(n) 2020-07-31 …
一道考研数学题,设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,f(1)=1/3 2020-08-02 …
f(1)=1f(2)=4f(3)=10f(4)=20类推..求f(n)f(n)比f(n-1)多1+2 2020-12-28 …