早教吧作业答案频道 -->其他-->
(2014•下城区一模)已知▱ABCD中,BC=1,AB=2,BC=1,AB=2,∠B=60°,若E为BC边延长线上一点,CE=1,连接AE交CD于F.(1)求证:AF=FE;(2)连接BF并延长交线段DE于G,求BG的长.
题目详情
(2014•下城区一模)已知▱ABCD中,BC=1,AB=2,BC=1,AB=2,∠B=60°,若E为BC边延长线上一点,CE=1,连接AE交CD于F.
(1)求证:AF=FE;
(2)连接BF并延长交线段DE于G,求BG的长.
(1)求证:AF=FE;
(2)连接BF并延长交线段DE于G,求BG的长.
▼优质解答
答案和解析
(1)证明:四边形ABCD是平行四边形,
∴AB∥CD,
∴CE:BC=EF:AF,
∵BC=1,CE=1,
∴BC=CE,
∴AF=FE;
(2)∵BE=BC+CE=2,AB=2,
∴AB=BE,
∵∠B=60°,
∴△ABE是等边三角形,
∴AE=AB=BE=2,
∵AD=BC=1,AD∥BC,
∴AD=CE,∠DAF=∠CEF,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴AF=FE=1,
∴BF垂直平分AE,
∴EF=CE=1,
∵∠AEB=60°,
∴△CEF是等边三角形,
同理:△ADF是等边三角形,
∴DF=EF,
∴∠EDF=∠DEF=30°,
∴∠DEC=90°,
∴BG=
=
.
∴AB∥CD,
∴CE:BC=EF:AF,
∵BC=1,CE=1,
∴BC=CE,
∴AF=FE;
(2)∵BE=BC+CE=2,AB=2,
∴AB=BE,
∵∠B=60°,
∴△ABE是等边三角形,
∴AE=AB=BE=2,
∵AD=BC=1,AD∥BC,
∴AD=CE,∠DAF=∠CEF,
在△ADF和△ECF中,
|
∴△ADF≌△ECF(AAS),
∴AF=FE=1,
∴BF垂直平分AE,
∴EF=CE=1,
∵∠AEB=60°,
∴△CEF是等边三角形,
同理:△ADF是等边三角形,
∴DF=EF,
∴∠EDF=∠DEF=30°,
∴∠DEC=90°,
∴BG=
BC |
cos∠GBE |
4
| ||
3 |
看了(2014•下城区一模)已知▱...的网友还看了以下:
25.(11分)如图所示,在平面直角坐标系内,点A和点C的坐标分别为(4,8)、(0,5),过点A 2020-04-05 …
如图所示,在平面直角坐标系内,点A和点C的坐标分别为(4,8)、(0,5),过点A作AB⊥x轴于点 2020-05-15 …
如图在直角坐标系中,圆O1过点PQE三点的圆,且与X相切点E,连接PE,QE,已知道P(0,9)Q 2020-05-22 …
在△ABC中,AB=AC,AC是圆0的弦.BC交圆0于D,作角ABC的外角平分线AE交圆0于E,连 2020-06-02 …
(2004•衢州)如图,在平面直角坐标系中,已知△ABC的顶点坐标分别为A(0,3)B(-2,0) 2020-07-20 …
三角形abc的内角abc和外角ac的角平分线交于点e,be交ac于f,过点e做eg平行于bd交a三 2020-07-31 …
(2013鞍山)如图,已知抛物线y=ax²+bx+c(a≠0)与x轴交于点A(-4,0),B(1, 2020-08-01 …
在正方形ABcD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过 2020-11-02 …
(2012•西湖区一模)如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4),点C,D 2020-11-08 …
已知抛物线y=ax2+bx+c(a不等于0)与x轴相较于A(-4,0),B(1,0)与y轴交于点D( 2020-11-27 …