阅读理解MsKelleroftensaid“WithoutAnneSullivanthenameofHelenKellerwouldhaveremainedunknown.”AsalittlegirlSullivanwasnostrangertohardship(困苦).Shea
| 阅读理解 Ms Keller often said “Without Anne Sullivan the name of Helen Keller would have remained unknown.” As a little girl Sullivan was no stranger to hardship(困苦) .She almost couldn't see anything and was at one time locked in a dark underground room of a mental institution(精神病院)because of mental problems.Little Annie Sullivan would attack anyone who came near sometimes.However an elderly nurse believed there was hope and she offered to help the child.Every day she made all her efforts to give little Annie words of love and encouragement. At last doctors noticed a change in the girl.They ever saw anger and hostility(敌意)in her eyes while now they noted a little gentleness and love.They moved her upstairs where she continued to become better.Then the day finally came when this seemingly “hopeless” child was released. Anne Sullivan grew into a young woman with a desire to help others as she herself was helped by the kind nurse.It was she who saw hope in Helen Keller.She loved her played with her until the flickering candle became a bright light to the world.Anne Sullivan brought wonders into Helen's life.But without that kind and warm-hearted nurse how could little Annie become such a kind-hearted teacher? And so it goes.Just how far back does the chain of love extend? And how far forward will it lead? You can never ignore the power of your love.It is a fire that once lit may burn forever. | (1) | What does the underlined sentence in the second paragraph mean? | [ ] | A. | When young Sullivan was not afraid of hardship. | B. | Hardship knew Sullivan when she was young. | C. | When young Sullivan experienced much hardship. | D. | When young Sullivan knew much about hardship. | | (2) | The passage mainly wants to tell us _______. | [ ] | A. | the secret life of Sullivan | B. | how Keller succeeded | C. | the hardship of Sullivan | D. | the power of love | | (3) | Which of the following is NOT true according to the passage? | [ ] | A. | Keller's teacher was completely blind and deaf. | B. | Sullivan was once mentally ill. | C. | Sullivan recovered with the help of an old nurse. | D. | Sullivan tried to be as helpful as the old nurse. | | (4) | Which of the following has the closest meaning to the underlined word “flickering”? | [ ] | A. | Burning brightly. | B. | Burning weakly. | C. | Shining violently. | D. | Shining strongly. | | |
A-F和X都是初中化学中常见的物质,其中A、C是无色气体,B、F是红色固体,a、b在高温下生成c和 2020-05-16 …
已知f(x)是定义在[-1,1]上的奇函数.当a,b∈[-1,1],且a+b≠0时,有f(a)+f 2020-06-12 …
设f(x)在(-∞,+∞)内连续可导,且m≤f(x)≤M,a>0.(1)求limt→a+14a2∫ 2020-06-12 …
设f(x)在(0,+∞)内有定义,若f(x)x单调减少,则对a>0,b>0.有()A.f(a+b) 2020-06-12 …
若函数y=f(x)满足f(-x)=f(x),当a,b∈(-∞,0]时总有f(a)−f(b)a−b> 2020-06-27 …
设函数f(x)在[a,b]二阶可导,f′(a)=f′(b)=0.证明存在ξ∈(a,b),使|f″( 2020-07-16 …
已知f(x)是定义在[-1,1]上的函数,f(x)=-f(-x),且f(1)=1,若a,b∈[-1 2020-07-16 …
设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是()A.limh→+ 2020-07-31 …
已知函数f(x)的定义域为R,对于任意的x∈R,都满足f(-x)=f(x),且对于任意的a,b∈(- 2020-11-01 …
定义在R上的函数f(x)对任意两个不相等实数a,b,总有f(a)−f(b)a−b>0成立,则必有() 2020-11-20 …