早教吧 育儿知识 作业答案 考试题库 百科 知识分享

liman=a求证lim[(a1+a2···+an)/n]=a答案:这题用极限的定义做由lim[(n→+∞),An]=a则对任意的ε>0,存在正整数N>0使得当k>N时有|Ak-a|<ε,现在我们来证明:由|Ak-a|<ε,得a-ε<Ak

题目详情
liman=a求证lim[(a1+a2···+an)/n]=a
答案:
这题用极限的定义做
由lim [(n→+∞),An]=a
则对任意的 ε>0,存在正整数 N>0 使得当 k>N 时有 |Ak-a|<ε,
现在我们来证明:

由|Ak-a|<ε,得a-ε<Ak<a+ε,则有(n-k+1)(a-ε)<Ak+a[k+1]+……+An<(n-k+1)(a+ε)
(n-k+1)(a-ε)/n<(Ak+A[k+1]+……+An)/n<(n-k+1)(a+ε)/n
整理得|(Ak+A[k+1]+……+An)/n-a+(k-1)(a-ε)/n|<ε,取极限得到
|(Ak+A[k+1]+……+An)/n-a|<ε

0<|(A1+A2+……+An)/n-a|
=|(A1+A2+……+A[k-1])/n+(Ak+A[k+1]+……+An)/n-a| ,
<|(A1+A2+……+A[k-1])/n|+|(Ak+A[k+1]+……+An)/n-a|
|(A1+A2+……+A[k-1])/n|取极限得0,而|(Ak+A[k+1]+……+An)/n-a|取极限得
|(Ak+A[k+1]+……+An)/n-a|<ε,从而有
0<|(A1+A2+……+An)/n-a|<ε,从而(A1+A2+……+An)/n的极限为a
问题是,如何得出的|(A1+A2+……+A[k-1])/n|取极限得0?
▼优质解答
答案和解析
k是某一个有限的值,并不是无穷,所以A1+A2+……+A[k-1] 是有限值。
而n→∞,有界/无穷=0