早教吧作业答案频道 -->其他-->
定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥18(3t−t)恒成立,则实数t的取值范围是()A.(-∞,-1]∪(0,3]B.(−∞,−3]∪(0,3]C
题目详情
定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥
(
−t)恒成立,则实数t的取值范围是( )
A.(-∞,-1]∪(0,3]
B.(−∞,−
]∪(0,
]
C.[-1,0)∪[3,+∞)
D.[−
,0)∪[
,+∞)
1 |
8 |
3 |
t |
A.(-∞,-1]∪(0,3]
B.(−∞,−
3 |
3 |
C.[-1,0)∪[3,+∞)
D.[−
3 |
3 |
▼优质解答
答案和解析
设x∈[-4,-2],则x+4∈[0,2],
由f(x+2)=2f(x),所以f(x+4)=2f(x+2)=4f(x),即f(x)=
f(x+4),结合x∈[0,2]时,f(x)=x2-2x,
所以f(x)≥
(
−t)可化为:
f(x+4)≥
(
−t)
即
−t≤2f(x+4)=2[(x+4)2-2(x+4)],恒成立
只需
−t≤2[(x+4)2−2(x+4)]min,易知当x+4=1,即x=-3时取得最小值-2.
即
≥0,解得-1≤t<0或t≥3.
故选C.
由f(x+2)=2f(x),所以f(x+4)=2f(x+2)=4f(x),即f(x)=
1 |
4 |
所以f(x)≥
1 |
8 |
3 |
t |
1 |
4 |
1 |
8 |
3 |
t |
即
3 |
t |
只需
3 |
t |
即
t2−2t−3 |
t |
故选C.
看了定义域为R的函数f(x)满足f...的网友还看了以下:
一、设三阶矩阵A的特征值为λ1=1,λ2=1,λ3=3,所对应的特征向量依次是α1=(1,1,1) 2020-04-13 …
设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(-1,1,1),求A老师 2020-04-13 …
1.观察下面的一列数,按某种规律填上适当的数:1/2,1/6,1/12,1/20,()...第10 2020-05-14 …
matlab数据拟合函数x=[1:62]y=[ 1 1 1 1 1 1 1 1 1 1 1 1 1 2020-05-16 …
一道关于函数奇偶性问题F(X)=X+1的绝对值+X-1的绝对值=X-1绝对值+X+1绝对值=F(X 2020-06-06 …
小明写自然数从1写到N,所写下的数的数字之和是28035.则N=.请注意:不是1加到N的和,而是1 2020-07-20 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
将下列4个数1.2^0.5,1.2^0.6,0.5^1.2,0.6^1.2,按从小到大的顺序排列为 2020-08-01 …
(2014•荆州模拟)已知函f(x)=x+mx+lnx,其中m为常数(1)讨论函数f(x)的单调性; 2020-11-12 …
3道初中数学题1.下列一组按规律排列的数:1,2,4,8,16…,第2004个数是?2.下面是一组按 2020-11-27 …